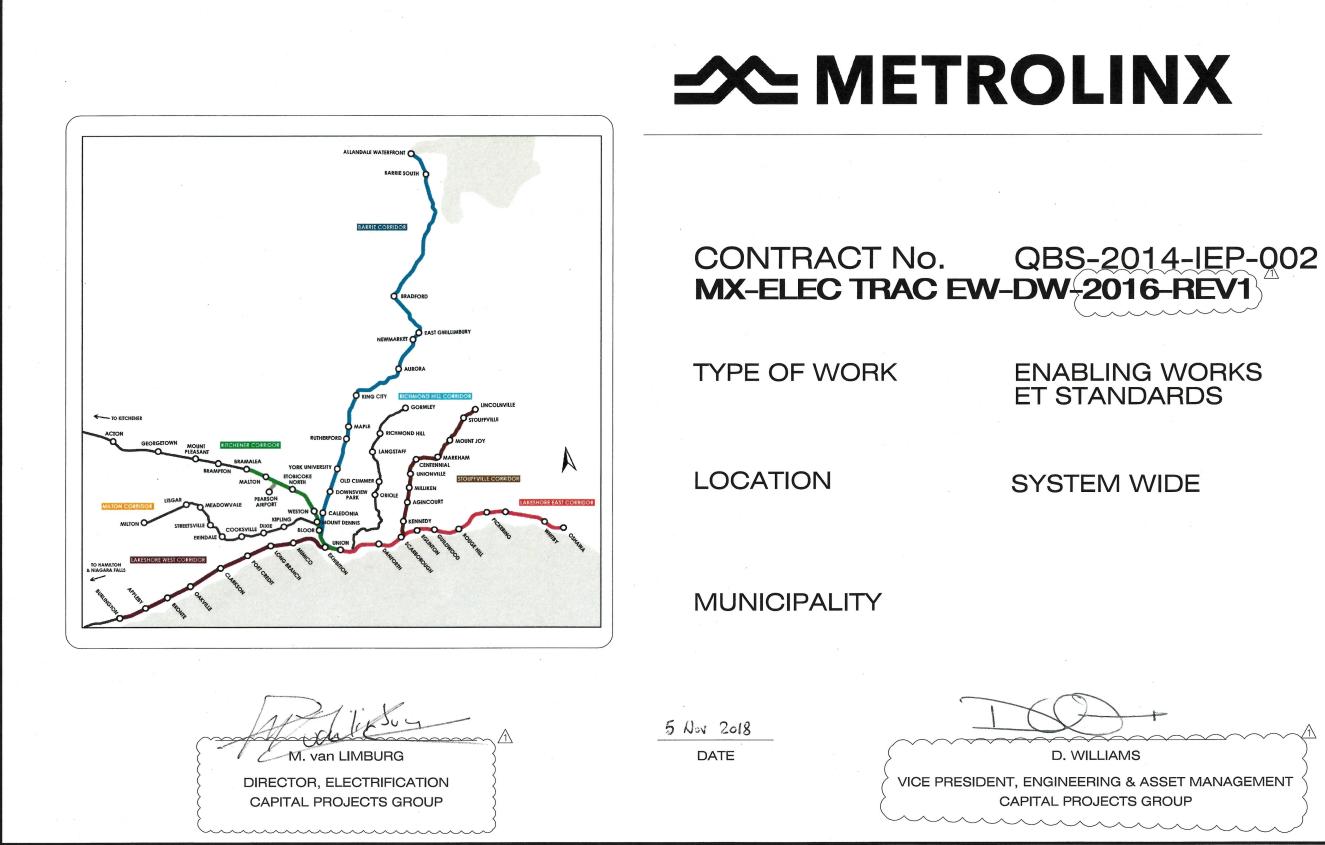


ENABLING WORKS ET STANDARDS

CONTRACT NO. QBS-2014-IEP-002 MX-ELEC TRAC EW-DW-2016-REV1



METROLINX

GO ELECTRIFICATION

PETER M. ZUK - CHIEF CAPITAL OFF

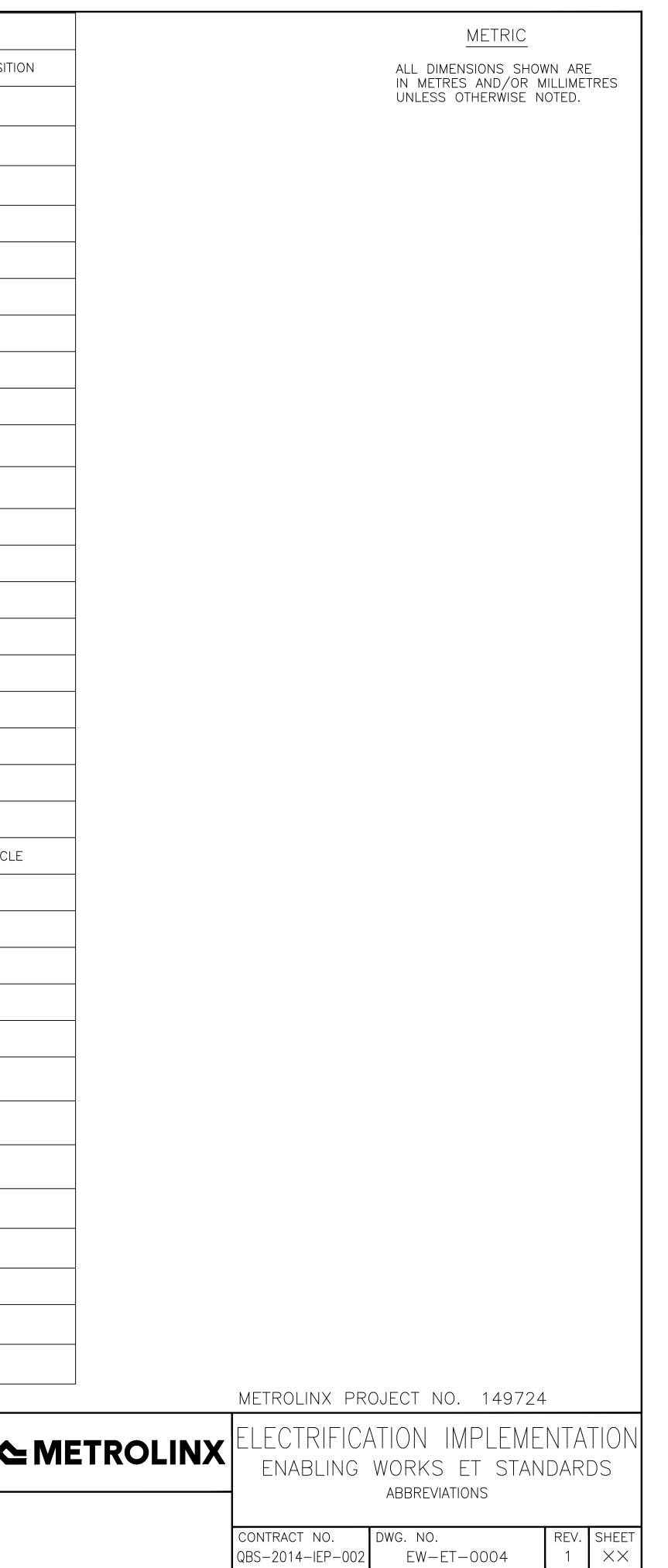
ENABLING WORKS ET STANDARDS GENERAL DRAWING INDEX						
SHEET NO.	DRAWING NO.	DRAWING TITLE				
	EW-ET-0001 TITLE SHEET					
	EW-ET-0002	SIGNATURE SHEET				
	EW-ET-0003	INDEX OF DRAWINGS				
	EW-ET-0004	ABBREVIATIONS				
		GROUNDING AND BONDING DRAWINGS				
SHEET NO.	DRAWING NO.	DRAWING TITLE				
	EW-ET-0101	GENERAL NOTES				
	EW-ET-0102	OVERHEAD CONTACT LINE ZONE				
	EW-ET-0103	RETROFIT TRACKSIDE PLATFORM – SHEET 1				
	EW-ET-0104	RETROFIT TRACKSIDE PLATFORM – SHEET 2				
	EW-ET-0105	RETROFIT CENTER ISLAND PLATFORM - SHEET 1				
	EW-ET-0106	RETROFIT CENTER ISLAND PLATFORM – SHEET 2				
	EW-ET-0107	NEW TRACKSIDE PLATFORM - SHEET 1				
	EW-ET-0108	NEW TRACKSIDE PLATFORM - SHEET 2				
	EW-ET-0109	NEW CENTER ISLAND PLATFORM - SHEET 1				
	EW-ET-0110	NEW CENTER ISLAND PLATFORM - SHEET 2				
	EW-ET-0115	STATION ELECTRICAL AND COMMUNICATION SERVICE				
	EW-ET-0116	OCLZ 3RD PARTY UTILITIES				
	EW-ET-0117	TYPICAL CONCRETE BRIDGE				
	EW-ET-0117A	TYPICAL UNDERPASS STRUCTURE (SUBWAY BRIDGE)				
	EW-ET-0118	TYPICAL STEEL BRIDGE				
	EW-ET-0119	CONNECTION DETAILS - SHEET 1				
	EW-ET-0120	CONNECTION DETAILS - SHEET 2				
	EW-ET-0121	CONNECTION DETAILS - SHEET 3				
	EW-ET-0122	CONNECTION DETAILS - SHEET 4				
	EW-ET-0123	CONNECTION DETAILS - SHEET 5				
	EW-ET-0124	CONNECTION DETAILS - SHEET 6				

RS – C:\pwworking\gfpw01\svfidleris\d0630010\149724-EW-ET-0003.dwg [LAYOUT] November 07, 2018 – 3:11pm svfid

v01∖s∨								
J∖gfp∿		REFERENCE DRAWINGS			ISSUE			RE
king								
wor								
∧p~								
ö								
I			1	180713	REVISED PER METROLINX COMMENT			
RS			0	161214	ISSUED AS FINAL EW-ET STANDARDS			
GFT	DWG NO.	TITLE	NO.	DATE	ISSUED FOR	REV.	DATE	

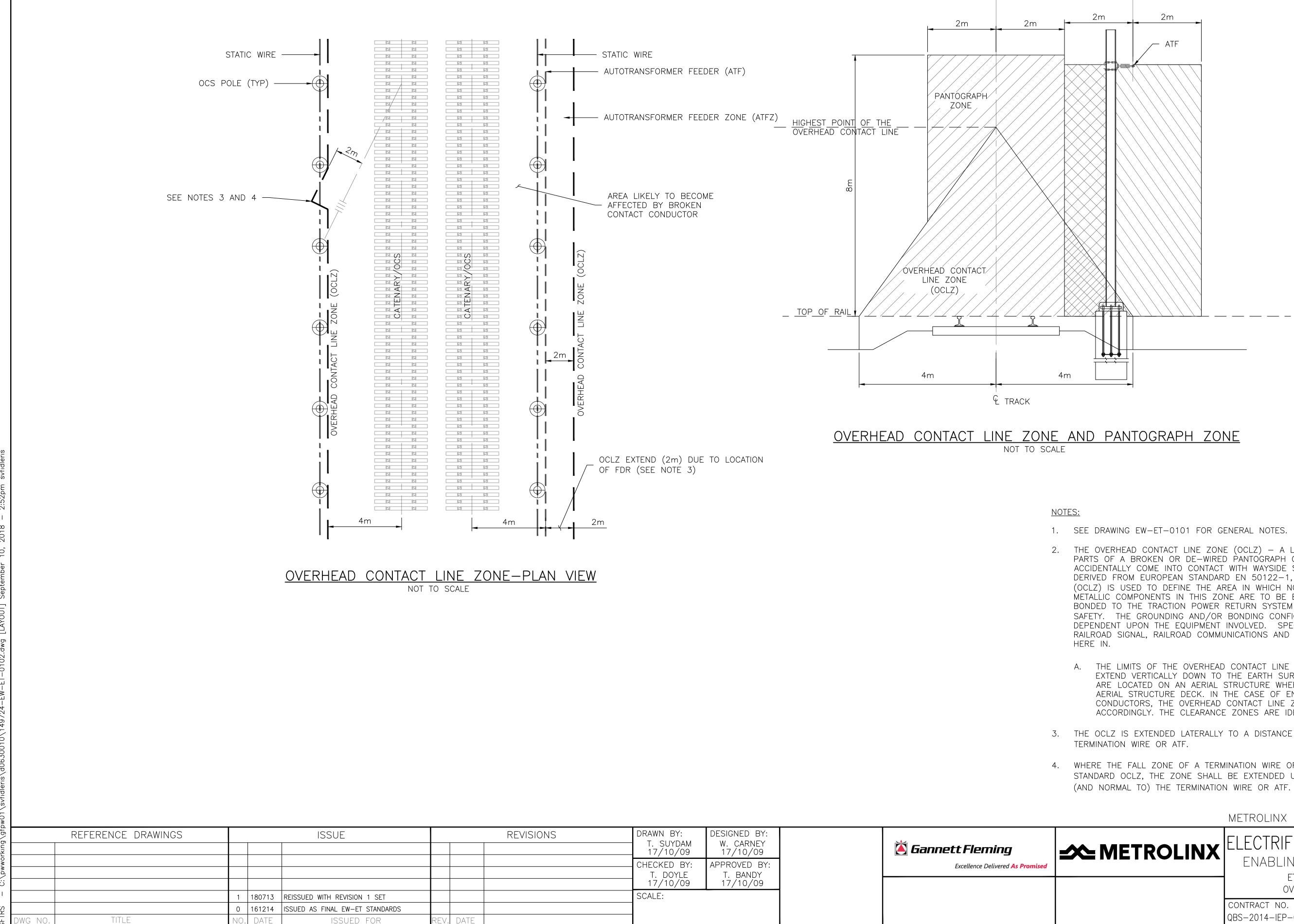
SHEET NO.	DRAWING NO.	DRAWING TITLE
	EW-ET-0201	GENERAL NOTES
	EW-ET-0210	DYNAMIC PLATE CLEARANCE – GO VEHICLE USRC
	EW-ET-0211	DYNAMIC PLATE CLEARANCE - PLATE TC_E_05e
	EW-ET-0212	DYNAMIC PLATE CLEARANCE – PLATE H
	EW-ET-0213	DYNAMIC PLATE CLEARANCE – PLATE F
	EW-ET-0214	DYNAMIC PLATE CLEARANCE - PLATE MP-40
	EW-ET-0220	GENERAL ARRANGEMENT - SIDE POLES ON PLATFORM
	EW-ET-0221	GENERAL ARRANGEMENT - PORTAL ON PLATFORM
	EW-ET-0222	GENERAL ARRANGEMENT – CENTER POLE ON ISLAND PLATFORM
	EW-ET-0225	CLEARANCE TO NOISE WALLS ALONG RAILROAD
	EW-ET-0226	OVERHEAD BRIDGE CLEARANCE
	EW-ET-0227	CLEARANCE TO STATION PLATFORM CANOPY
	EW-ET-0228	FEEDER WIRE MAXIMUM AND MINIMUM SAGS
	EW-ET-0229	MINIMUM VEGETATION CLEARANCE
	EW-ET-0230	ELECTRICAL UTILITY CROSSING - THIRD PARTY OVERHEAD LINE
	EW-ET-0231	ELECTRICAL UTILITY CROSSING – THIRD PARTY OVERHEAD LINE ZONES WITH ADDITIONAL DISTRIBUTION
	EW-ET-0232	THIRD PARTY UTILITY PARALLEL TO TRACK
	EW-ET-0233	THIRD PARTY UTILITY PARALLEL TO TRACK ADDITIONAL DISTRUBUTION
	EW-ET-0240	UTILITY BUILD ZONE REQUIREMENTS
	EW-ET-0250	DRILLED PIER FOUNDATION - STANDALONE OCS POLE
	EW-ET-0251	DRILLED PIER FOUNDATION - GROUNDING AND BONDING
	EW-ET-0252	STATION CANOPY INTEGRATION - COLUMN SPLICE
	EW-ET-0253	DOWN GUY ANCHORAGE – GENERAL ARRANGEMENT 1
	EW-ET-0254	DOWN GUY ANCHORAGE – GENERAL ARRANGEMENT 2

5


					OJECT NO. 149724		
REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: W. FRYER 16/06/30	🎽 Gannett Fleming	ELECTRIFIC	ATION IMPLEME	NTA	ΓΙΟΝ
	CHECKED BY: S. FIDLERIS 17/12/13	APPROVED BY: S.MARZI 18/01/05	Excellence Delivered As Promised		WORKS ET STAN	DARI	JS
	SCALE:			CONTRACT NO. QBS-2014-IEP-002	DWG. NO. EW-ET-0003	REV. 1	SHEET XX

METRIC

			ABBRE	VIATIONS			
AAR	ASSOCIATION OF AMERICAN RAILROAD	EGC	EQUIPMENT GROUNDING CONDUCTOR	MGB	MAIN GROUNDING BAR	SCADA	SUPERVISORY CONTROL AND DATA ACQUISITIO
ac	ALTERNATING CURRENT	EL/ ELEV	ELEVATION	M/C	MONITOR AND CONTROL	SM	SINGLE MODE
ADJ	ADJUSTMENT	ET	ELECTRIC TRACTION	MIN	MINIMUM	SPD	SURGE PROTECTION DEVICE
AGWB	ALUMINUM GROUND WIRE (BARE)			mm	MILLIMETER	SQ	SQUARE
AGWC	ALUMINUM GROUND WIRE (COVERED)	FDN	FOUNDATION	MOD	MODIFIED	SS/SST	STAINLESS STEEL
ASTM	AMERICAN SOCIETY FOR TESTING AND MATERIALS	FDRI	FEEDER WIRE (INSULATED)	MP	MILEPOST	STA	STATION DISTANCE
ATF	AUTOTRANSFORMER FEEDER	FRA	FEDERAL RAILROAD ADMINISTRATION	MPA	MID POINT ANCHOR	STD/(S)	STANDARD/STANDARDS
ATFZ	AUTOTRANSFORMER FEEDER ZONE	FRE	FIBERGLASS-REINFORCED EPOXY	MPT	MID POINT TIE WIRE	STN	PASSENGER STATION
ATM	ALONG TRACK MOVEMENT	FTA	FIXED TERMINATION ANCHOR	MV	MEDIUM VOLTAGE	SW	STATIC WIRE
AWG	AMERICAN WIRE GAGE	FW	FEEDER WIRE	MW	MESSENGER WIRE	SWS	SWITCHING STATION
BWA	BALANCE WEIGHT TERMINATION ANCHOR	GALV.	GALVANIZED	N	NEWTON	т/	TOP OF
		GBCW	GROUNDING AND BONDING WIRE	NFPA	NATIONAL FIRE PROTECTION ASSOCIATION	TBD	TO BE DETERMINED
С	CELSIUS	GENL	GENERAL	N.O.	NORMALLY OPEN	TBS	TRANSMISSION BACKBONE SYSTEM
CCZ	CURRENT COLLECTOR ZONE	GTCC	GO TRANSIT CONTROL CENTER	NOM	NOMINAL	TOR	TOP OF RAIL
CGWC	COPPER GROUND WIRE (COVERED)			NTS	NOT TO SCALE	TPF	TRACTION POWER FACILITY
CL	CENTER LINE	н/нт	HEIGHT			TPSS	TRACTION POWER SUBSTATION
CLR	CLEARANCE	HORIZ	HORIZONTAL	0/LAP	OVERLAP	TRK	TRACK
СР	COUNTERPOISE	HRL	HIGH RAIL	OCLZ	OVERHEAD CONTACT LINE ZONE	TRKS	TRACKS
CW	CONTACT WIRE			OCS	OVERHEAD CONTACT SYSTEM	TVM	TICKET VENDING MACHINE
CWB	COUNTERPOISE WIRE (BURIED)	IN	INCH	ОН	OVERHEAD	TWA	TIE WIRE ANCHOR
СМН	CONTACT WIRE HEIGHT	IR	IN RUNNING	OOR	OUT-OF-RUNNING	TWPC	TRACTION WAYSIDE POWER CONTROL CUBICLE
						TYP	TYPICAL
dc	DIRECT CURRENT	JW	JUMPER WIRE	Pa	PASCAL		
DEG, °	DEGREE			PITO	POINT OF INTERSECTION OF THE TURNOUT	UP	UNION PEARSON EXPRESS
DG	DOWN GUY	kg	KILOGRAM	PS	PARALLELING STATION		
DGW	DOWN GUY WIRE	kg/M	KILOGRAM PER METER	PSF	POUND PER SQUARE FOOT	V	VOLT
DIA	DIAMETER			PVC	POLYVINYL CHLORIDE	VERT	VERTICAL
DIST	DISTRIBUTION	LG	LONG	P.S.	POINT OF SWITCH	VLD	VOLTAGE LIMITING DEVICE
DRM	DESIGN REQUIREMENT MANUAL	LPS	LIGHTNING PROTECTION SYSTEM			VMS	VISUAL MESSAGE SIGN
DVP	DON VALLEY PARKWAY	LV	LOW VOLTAGE (120V NOMINAL VOLTAGE)	RC	RETURN CABLE		
DWG	DRAWING			REINF	REINFORCEMENT	W	WIDTH
		m/M	METER	ROW	RIGHT-OF-WAY	WP	WORKING POINT
EA	EMERGENCY ALARM	MF	MAINTENANCE FACILITY				
EB	EASTBOUND						
	REFERENCE DRAWINGS	ISSUE	E REVISIONS		DRAWN BY: DESIGNED BY:	I	
					R. BROWN W. FRYER 16/06/30 16/06/30		Image: Second stateImage: Second s
					CHECKED BY: APPROVED BY: D. MIHAI B. SHOBER 16/06/30 16/06/30	F	Excellence Delivered As Promised
		ISSUED WITH RE			SCALE:		
DWG NO.	0161214ISSTITLENO.DATE		EW-ET STANDARDS SUED FOR REV. DATE				


СF Г

🎽 Gannett Fleming		DESIGNED BY: W. FRYER 16/06/30	DRAWN BY: R. BROWN 16/06/30	VISIONS
Excellence Delivered As Promised		APPROVED BY: B. SHOBER	CHECKED BY: D. MIHAI	
	-	16/06/30	16/06/30 SCALE:	

GENE	ERAL NOTES:			OVERHEAD CONTACT	LINE ZONE (OCLZ)(CONTINUED):						METRIC	
1. T S S	THESE DRAWINGS PRESENT THE REQUIR STATIONS FOR COORDINATION WITH THE SYSTEM (TPRS). THE TPRS CONSISTS OI	EMENTS FOR GROUNDING AND BONDING OF PASS FUTURE ELECTRIFICATION AND ITS TRACTION POW F VARIOUS COMPONENTS (SUCH AS RUNNING RA	ER RETURN LS, RAIL	2. THE OVERHEAD CO LINE, OR LIVE PAI ACCIDENTALLY CO	ONTACT LINE ZONE (OCLZ) REPRESENT RTS OF A BROKEN OR DE-WIRED PAN ME INTO CONTACT WITH WAYSIDE STRU	OGRAPH OR ENERGIZED F CTURES AND EQUIPMENT. A	RAGMENTS, MAY As derived from	GROUNDING	G AND BONDING AT STATION PLATFORMS	<u>(CONTINUED):</u>	ALL DIMENSIONS SHOW IN METRES AND/OR M UNLESS OTHERWISE NO	IILLIMETRES
V C	/EHICLE TO ULTIMATELY RETURN TO ITS CONDITIONS AND UNDER FAULT CONDITIC	AND EARTH) TO ALLOW CURRENT FROM THE ELE S SUPPLY SUBSTATION SOURCE UNDER BOTH NO ONS. SHALL PROVIDE THE MEANS TO CARRY TRACTION	MAL OPERA	TING THE AREA IN WHI	ARD EN 50122–1, THE OVERHEAD CON CH NORMALLY NON–CURRENT–CARRYIN TLY GROUNDED OR BONDED TO THE TF SAFETY.	G METALLIC COMPÒNENTS	IN THIS ZONE ARE TO	PLATE CONN	ND-HOLE ENCLOSURE, WITH A COPPER I FORM FOR THIS COUNTERPOISE TO SERVI NECTION TO THE RAILS VIA AN IMPEDANCE BE COORDINATED WITH THE SIGNAL SYSTE	CE AS A TESTING LOCA E BOND. THE IMPEDANC	ATION, AS WELL AS PERMIT CE BOND CONNECTION LOCA	THE
C O W	CURRENTS INTO THE EARTH, UNDER BO DPERATING EQUIPMENT LIMITS, WITHOUT WITHOUT ADVERSELY AFFECTING CONTINU	TH NORMAL AND FAULT CONDITIONS, WITHOUT EX THERMAL DEGRADATION OR MECHANICAL BREAKD JITY OF SERVICE OR PERSONNEL SAFETY.	CEEDING DWN, AND	<u>STEP AND TOUCH PC</u>	<u>DTENTIALS:</u> AFETY ANALYSIS SHALL TAKE INTO ACC	NUNT CRITERIA FOR THE C		AFFE IN AF	NTERPOISE SHALL BE CONNECTED TO THE CT BROKEN RAIL DETECTION. THIS HAND- REAS SUBJECTED TO VEHICULAR TRAFFIC AST CONCRETE SUITABLE FOR PLACEMEN	-HOLE ENCLOSURE SHA ALONG THE RIGHT OF	LL BE POLYMER CONCRETE Way, otherwise it shall e	UNLESS BE
M S B	MATERIAL SHALL BE CAPABLE OF SUSTA SWITCH—OFF (TRIP) TIME IMPOSED ON 1	E CONTAINED WITHIN THE RIGHT OF WAY CONFINE AINING THE SHORT—CIRCUIT CURRENTS FOR UP T THE SYSTEM WITHOUT THERMAL DEGRADATION OR BONDING SHALL BE CAPABLE OF DISCHARGING /	D THE TOTA MECHANICA	RISE. THE ANALYS CONDUCTIVE PART IMPLEMENTATION	SIS SHALL BE UNDERTAKEN TO ASSESS IS NEED TO BE GROUNDED AND BONDI SHALL BE IDENTIFIED TO ENSURE THAT	WHICH NORMALLY NON-C D, AND THE APPROPRIATE	URRENT CARRYING METHOD OF	D. ALL	KS. NORMALLY NON-CURRENT-CARRYING MET EPT FOR SMALL ITEMS LESS THAN 2X3m FORCEMENT STEEL FOR CONCRETE PLATFO	ALLIC STRUCTURES AND) ON THE PLATFORM (1	MISCELLANEOUS METALLIC	ITEMS
4. A P C	ADEQUATE BONDING SHALL BE DESIGNED PROVIDE PROPER RETURN CIRCUITS FOR	D AND INSTALLED THROUGHOUT THE STATION PLA R THE NORMAL TRACTION POWER CURRENTS AND DNS AS SPECIFIED HEREIN WITHOUT AFFECTING L	FAULT	A TO ASSOCIATED STRU STATION PLATFORM	AND BONDING OF OTHER NON-CURREN ICTURE, INCLUDING THE OVERHEAD CON M METALLIC OBJECTS, AND OTHER CON THAT TOUCH VOLTAGES DO NOT EXCEEN	TACT SYSTEM (OCS) STRU DUCTIVE TRACKSIDE EQUIPI	CTURES, RAILS, MENT, SHALL BE	C ELEV	ATORS, OR OTHER FEATURES) SHALL BE PERS SHALL BE #4/0 AWG (MINIMUM) CO RE OCS POLES ARE PLANNED TO BE WITH	BONDED DIRECTLY TO OPPER IN SIZE (UNLESS HIN STATION PLATFORM	THE COUNTERPOISE. THE BO S OTHERWISE NOTED). AREAS, THEIR STATIC WIRE	IS TO
5. TI R C	THE GROUNDING AND BONDING SYSTEM REVISION OF THE CANADIAN ELECTRICAL CODE, THE NATIONAL ELECTRICAL CODE,	SHALL COMPLY WITH THE REQUIREMENTS OF TH CODE PART 1 AND PART 2, THE ONTARIO ELEC METROLINX GUIDELINES AND THE TECHNICAL AN	RICAL SAFE SAFETY	<u>GROUNDING AND BON</u>	SECTION 9.2.2. NDING AT STATION PLATFORMS:			COUN	SOLATED FROM THE POLES, AND ITS FOU MUM OF 25 OHMS. THE FOUNDATION GRO ITERPOISE FURTHER REDUCING THE FOUN REAS WHERE PORTAL TYPE OCS STRUCTU	DUNDING SHALL BE BOI IDATION GROUND RESIS	NDED TO THE STATION TANCE TO A MAXIMUM OF 5	5 OHMS.
S 6. S	STANDARDS. SUGGESTED MANUFACTURERS AND CATAL	AND OTHER APPLICABLE LOCAL AND INTERNATION, LOG NUMBERS FOR STANDARD PRODUCTS ARE P IED, WITH CUT SHEETS SUBMITTED FOR OWNERS	OVIDED HE	1. STATION PLATFORM POTENTIALS WHER CAR BODIES AND	M AREAS REQUIRE SPECIAL CONSIDERA E PASSENGERS COULD SIMULTANEOUSL METALLIC OBJECTS ON THE PLATFORM EQUIPMENT AGAINST TRACTION POWER	Y COME IN CONTACT WITH IN ADDITION, THE NEED	ROLLING STOCK TO PROTECT	BOTH COUN	INBOUND AND OUTBOUND PLATFORMS, T INERPOISE ONLY AT ONE PLATFORM. THIS LECTRICAL AND UTILITY SERVICES:	THE OCS POLES SHALL	BE BONDED TO THE	
7. P		TION. ALL MATERIALS SHALL BE CSA APPROVED. PPURTENANCES SHALL BE COMPLIANT WITH APPL	CABLE CSA	AND AUTO-TRANSFORM	A, CHAPTER 33, SECTION 7.5.1.1 METH	GIZE THIS AREA. THE CON	FIGURATION	1. INSTALL	ATIONS FOR ELECTRICAL SERVICES SHALL IT PERMITS THE EXPOSED CONDUCTIVE	CONFORM TO EN 501	122-1:2011 SECTION 7.4.4.	
Т	THE GROUNDING AND BONDING DESIGN:	TO THE PUBLIC, THE FOLLOWING CONSTRAINTS S		A. FOR RETROFIT IN	IS: NSTALLATIONS OF EXISTING STATIONS P	AIFORM GROUNDING, A CO	OUNTERPOISE WIRE { }	PANELE CONNE	F AND THEN DISCONNECTING THE CIRCUIT BOARD TO THE EXPOSED CONDUCTIVE PAP CTION, WHICH ORIGINATES FROM THE ELE OF THE EQUIPMENT WITHIN THE OCLZ, SH	RT OF THE EQUIPMENT	WITHIN THE OCLZ. THE GRO TO THE EXPOSED CONDUCTIV	DUND {
В. С.	INJURY OR PROPERTY DAMAGE; MATERIALS SHALL BE CONCEALED WHEN LOCATION OF GROUNDING TESTING WEL	REVER POSSIBLE; _L STATIONS IN PUBLIC AREAS SHALL BE AVOIDE		PLATFORM WITH FEET) BEYOND T	PPER, 37 STRAND) SHALL BE INSTALLED THE CONDUCTOR BURIED IN EARTH AN THE END OF EACH PLATFORM WITH A T NECESSARY, ADDITIONAL PROVISIONS FO	D EXTENDING A MINIMUM (ESTED GROUND RESISTANC	OF 15 METERS (50 }	READY GROUN	FOR SERVICE. A CONNECTION SHALL ALS D BUS BAR OF THE STATION POWER SUF IETALLIC RACEWAYS SHOULD ALSO BE US	SO BE MADE FROM THE PPLY (A CROSS BOND	COUNTERPOISE TO THE MA SHALL NOT BE CREATED).	AIN
9. G		GROUND POTENTIAL RISE STUDIES AND DETAILED		L THE 5 OHM VAL	LUE. THE BURIED COUNTERPOISE WIRE DEPTH (0.41 – 0.61 METERS) TO AVO	MAY BE INSTALLED ON THE DID DAMAGE FROM TRACK	E TRACK SIDE OF THE } }	3. LOW V(NG THE STATION PLATFORM AREA AND OT			
S	SHALL BE #4/0 AWG IN SIZE.	ELECTRIC TRACTION GROUNDING AND/OR BONDING		R B. A HAND-HOLE E PLATFORM FOR T CONNECTION TO	ENCLOSURE, WITH A COPPER BUS BAR, THIS COUNTERPOISE TO SERVICE AS A THE RAILS VIA AN IMPEDANCE BOND.	SHALL BE INSTALLED AT TESTING LOCATION, AS WE	EACH END OF THE ILL AS PERMIT THE	1. EXISTIN	<u>Y UTILITIES:</u> IG UTILITIES:			
M	IETAL AND "NO-OX-ID" GREASE OR EG UG OR USING EXOTHERMIC WELD CONN	QUIVALENT SHALL BE APPLIED BEFORE BOLTING (OPPER GRC	UND IS TO BE COORL SHALL BE CONN RAIL DETECTION.	DINATED WITH THE SIGNAL SYSTEM DES IECTED TO THE RAILS AT ONE END ONI THIS HAND-HOLE ENCLOSURE SHALL VEHICULAR TRAFFIC ALONG THE RIGHT	Y SO AS NOT TO ADVERS. BE POLYMER CONCRETE U	ELY AFFECT BROKEN NLESS IN AREAS	RETUF PROJE		D BE ADVISED OF THE	FUTURE ELECTRIFICATION	
D Ti	DESIGNS, INCLUDING CIVIL, ARCHITECTUR FRACTION POWER SUPPLY AND DISTRIBU	RAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, JIION, COMMUNICATIONS, AND SIGNALING.	ND PLUMBI	NG, CONCRETE SUITA	ABLE FOR PLACEMENT IN ROADWAYS. IF TRACK, IT SHALL WITHSTAND COORER	ENCLOSURE IS WITHIN 7.	5m OF THE	GROU	SED METALLIC UTILITY PIPING (WATER, SE NDED IN ACCORDANCE WITH THE UTILITY'S SED METALLIC UTILITY PIPING THAT IS WIT	S REQUIREMENTS.		
(E D	EMC) AND ELECTROMAGNETIC INTERFER		CTIVE DESIG	NS (FROM THIS COUN AWG (MINIMUM)	ROFIT CONSTRUCTION IS REQUIRED AT NTERPOISE TO PLATFORM METALLIC OB COPPER IN SIZE (UNLESS OTHERWISE	ECTS. THE BONDING JUMF NOTED). ALL NORMALLY	PERS SHALL BE #4/0	RETUF SHALL	RN SYSTEM. IF CONTINUOUSLY RUNNING BE BROKEN INTO SECTIONS OF APPRO RS AND BE BONDED AT ITS MIDPOINT TO	WITHIN THE OCLZ AREA KIMATELY 305 METERS	, THEN ITS METALLIC PIPING WITH APPROVED INSULATING	<u>`</u>
C V	CURRENT AND CORROSION CONTROL ME /ICINITY OF DIRECT CURRENT (DC) TRAC	S SHALL BE COORDINATED WITH ANY NEIGHBORING CASURES FOR ADJACENT SYSTEMS, AS WELL AS N CTION POWER TRANSIT SYSTEMS. ESIGNED AND IMPLEMENTED PRIMARILY IN ACCORE	HEN IN TH	SMALL ITEMS 2X	CARRYING METALLIC STRUCTURES AND (3m OR LESS) ON THE PLATFORM (INC FORMS, ANY OCS POLES, STAIRWAYS, F LL BE BONDED DIRECTLY TO THE COUN	LUDING PLATFORM REINFO LATFORM SHELTERS, ELEVA	RCEMENT STEEL FOR	OTHER	ANY EXISTING EARTH-MADE GROUND CO R MECHANISMS WERE USED TO GROUND TILITIES:	THESE FACILITIES, METF	ROLINX IS TO BE ADVISED.	
	OLLOWING STANDARDS AS APPLICABLE:		ANCE WITH	D. WHERE OCS POL	LES ARE PLANNED TO BE WITHIN STATI OM THE POLES, AND ITS FOUNDATION	ON PLATFORM AREAS, THEI GROUNDED PER OCS REQU	JIREMENTS FOR A	A. NEW	BURIED 3RD PARTY UTILITIES UNDER THE WITH ITS ENDS SEALED TO PREVENT LEA TATE ANY FUTURE UTILITY REPLACEMENT,	TRACKS ARE TO BE II KAGE AND INGRESS OF	NSTALLED IN A STEEL CASIN MOISTURE AND SOIL. THIS	IG { IS TO {
		GROUNDING REQUIREMENTS AND GROUNDING REC	UIREMENTS	COUNTERPOISE F	OHMS. THE FOUNDATION GROUNDING FURTHER REDUCING THE FOUNDATION OF ION, A PORTION OF THE STATION PLATE	ROUND RESISTANCE TO A ORM END, NEAR THE HAN	MAXIMUM OF 5	COMP	K BED INFRASTRUCTURE IF THE UTILITY C ROMISED.	ARRYING LIQUID OR PR	RESSURIZED SUBSTANCES WE	ERE
	CAN/CSA C22.2 NO.8 — M91 (REA STANDARD	FFIRMED 2003) RAILWAY ELECTRIFICATION GUIDEL	NE	E. IN AREAS WHERE	REBAR EXPOSED TO PERMIT A BOND REFE PLATFORMS. E PORTAL TYPE OCS STRUCTURES ARE	LOCATED, AND HAVE THEIF	R FOUNDATIONS IN	GROU	NDED IN ACCORDANCE WITH THE UTILITY'S METALLIC UTILITY'S METALLIC UTILITY'S FEFORT MUST BE MADE TO KEEP NEW	S REQUIREMENTS.		
	RELATING TO ELECTRICAL SAFETY AN		NS	COUNTERPOISE (AND OUTBOUND PLATFORMS, THE OCS ONLY AT ONE PLATFORM. THIS IS SO N ID-STATIONS WITH EXTENSIVE REHABILIT	OT TO CREATE A CROSS-	BOND POINT.	STEEL STEEL	SED 3RD PARTY UTILITIES INSIDE THE OC . CASING PIPE THAT IS ISOLATED FROM T . CASING PIPE SHALL HAVE INSULATING C	THE CARRIER PIPE BY A	APPROVED INSULATORS. THE TELY 305 METERS WITH ITS	
	IEC 60479: EFFECTS OF CURRENT CSA B72 – M87 (REAFFIRMED 200 SYSTEMS	08) – INSTALLATION CODE FOR LIGHTNING PROTE	CTION	A. FOR NEWLY CON	ISTRUCTED STATIONS WITH CONCRETE F L BE MADE ELECTRICALLY CONTINUOUS EBAR SPLICE/OVERLAPS ACROSS THE L	LATFORMS, THE TOP LAYED BY EXOTHERMICALLY WELD	R OF REBAR IN THE	3. UTILITIE	DINT BONDED TO THE NEAREST OCS STRU			
	NFPA 780: STANDARD FOR LIGHTNIN ONTARIO ELECTRICAL SAFETY CODE			EXOTHERMICALLY	WELDING THE PERPENDICULAR REBAR	CROSSINGS TO THE LONG	ITUDINAL BARS EVERY	ENTEF	ATING COUPLING SHALL BE INSTALLED ON RING THE PASSENGER STATIONS INSIDE TH ONDED TO THE STATION GROUND GRID.			S TO
OVER	RHEAD CONTACT LINE ZONE (OCLZ):			CONSTRUCTED, A	AND A $\#4/0$ awg, 37 strand bare c g the entire length of the platfo ts to the traction return system.	OPPER WIRE (COUNTERPOIS RM TO FACILITATE BONDING	SE) SHALL BE }	1. FLASH	BRIDGE STRUCTURES: PLATES SHALL BE PROVIDED AT OVERHE			
P	PROPERLY GROUNDED AND BONDED. TH	PASSENGER STATIONS ARE WITHIN THE OCLZ ANI E GROUNDING AND/OR BONDING CONFIGURATION QUIPMENT INVOLVED. SPECIAL CONSIDERATIONS AND 3RD PARTY UTILITIES.	TO BE	O A RESISTANCE VALU	AICALLY CONNECTED TO THE REBAR AP METERS (50 FEET) BEYOND THE ENDS IE NETWORK OF REBAR AND COUNTERF UE OF 5 OHMS (MAXIMUM). IF NECES TO ACHIEVE THE 5 OHM VALUE.	OF THE PLATFORM WITH OISE GROUND SHALL HAVE	GROUND ROD {	RETURN 2. OVERHI	CTIVE MATERIAL AS STATED IN THE PERFO N SYSTEM. EAD STEEL BRIDGES SHALL HAVE TWO CO WIRE FOR BONDING TO THE TRACTION R	ONNECTIONS ON BOTH		
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				METROLINX PR	OJECT NO. 149724	
R	REFERENCE DRAWINGS	ISSUE		REVISIONS	DRAWN BY: DESIGNED BY: T. SUYDAM W. CARNEY 17/10/09 17/10/09		🞽 Gannett Flemin	g			ATION IMPLEME	
					CHECKED BY: APPROVED BY: T. DOYLE T. BANDY 17/10/09 17/10/09		Excellence Deliver			ENABLING	WORKS ET STAN ROUNDING AND BONDING	DARDS
		1     180713     REVISED PER METROLINX COMMENTS       0     161214     ISSUED AS FINAL EW-ET STANDARDS			SCALE:	1				CONTRACT NO.	GENERAL NOTES DWG. NO.	REV. SHEET
DWG NO.	TITLE	NO. DATE ISSUED FOR	rev. date							QBS-2014-IEP-002	EW-ET-0101	1 XX

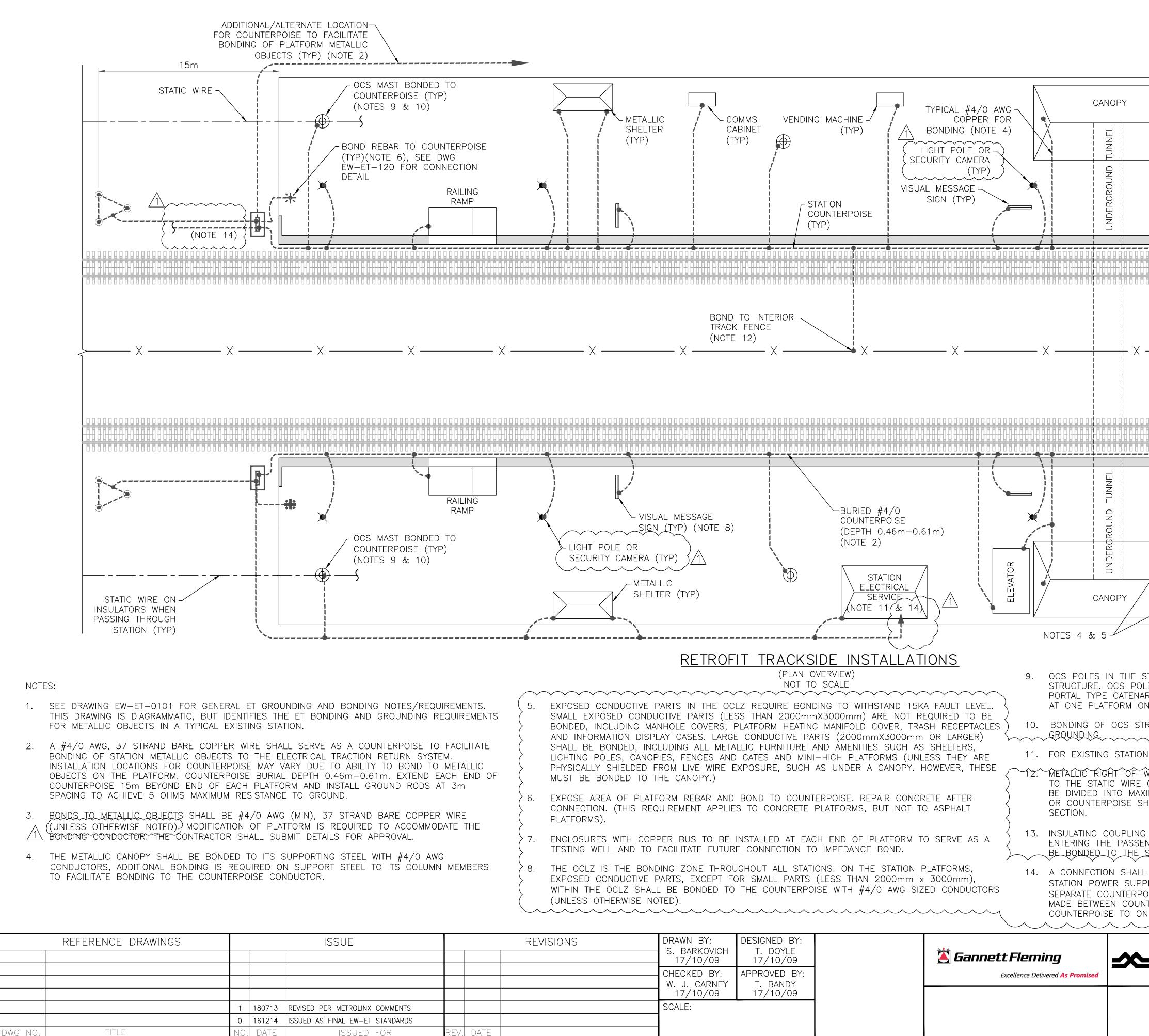
METROLINX	PROJECT	NO.	149724
-----------	---------	-----	--------



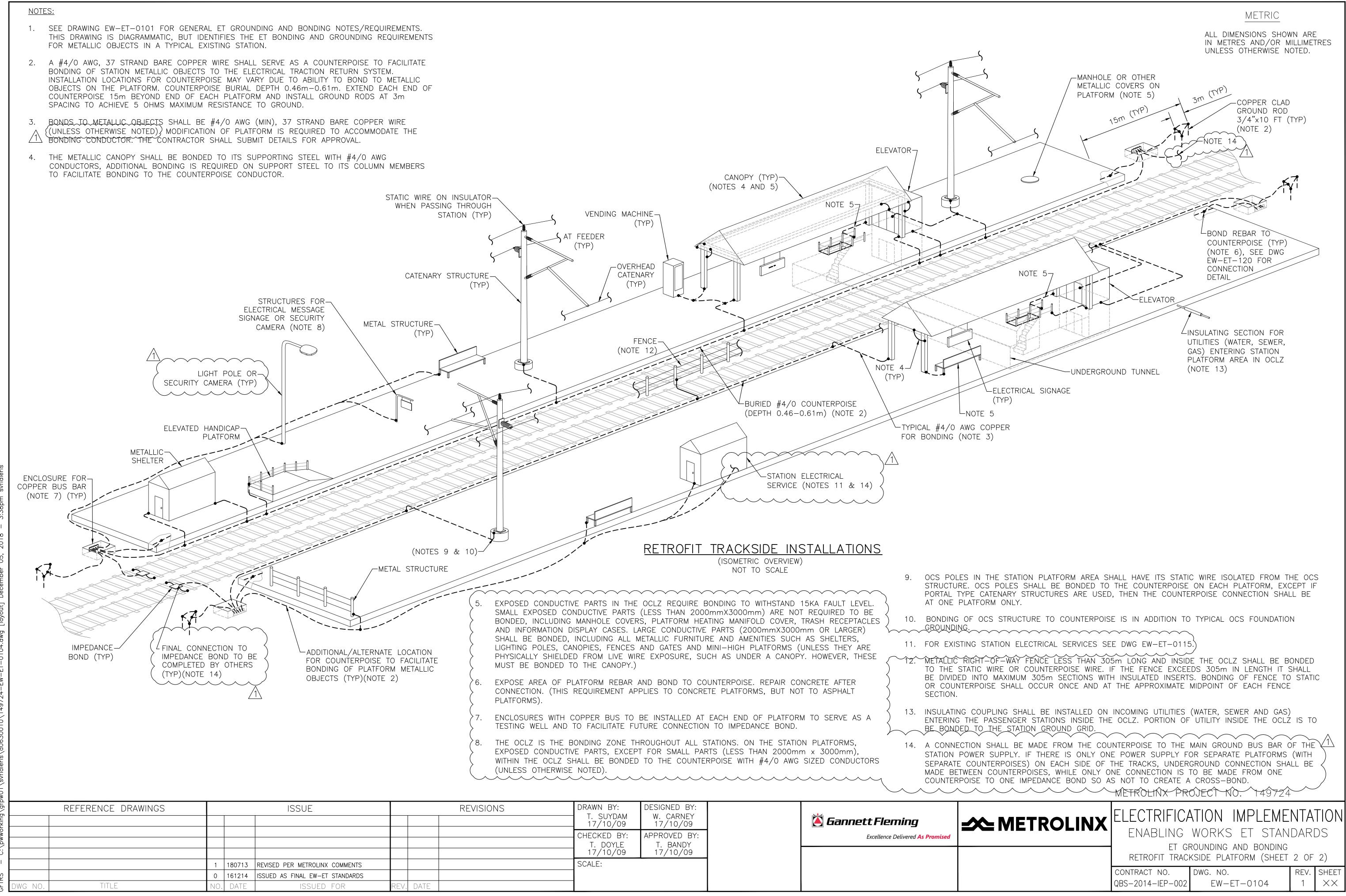
REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: W. CARNEY 17/10/09	🎽 Gannett Fleming	
	CHECKED BY: T. DOYLE 17/10/09	APPROVED BY: T. BANDY 17/10/09	Excellence Delivered As Promised	
	SCALE:			

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

2. THE OVERHEAD CONTACT LINE ZONE (OCLZ) - A LIVE BROKEN CONTACT LINE, OR LIVE PARTS OF A BROKEN OR DE-WIRED PANTOGRAPH OR ENERGIZED FRAGMENTS. MAY ACCIDENTALLY COME INTO CONTACT WITH WAYSIDE STRUCTURES AND EQUIPMENT. AS DERIVED FROM EUROPEAN STANDARD EN 50122-1, THE OVERHEAD CONTACT LINE ZONE (OCLZ) IS USED TO DEFINE THE AREA IN WHICH NORMALLY NON-CURRENT-CARRYING METALLIC COMPONENTS IN THIS ZONE ARE TO BE EITHER DIRECTLY GROUNDED OR BONDED TO THE TRACTION POWER RETURN SYSTEM TO PROVIDE FOR PERSONNEL SAFETY. THE GROUNDING AND/OR BONDING CONFIGURATION TO BE EMPLOYED IS DEPENDENT UPON THE EQUIPMENT INVOLVED. SPECIAL CONSIDERATIONS ARE GIVEN TO RAILROAD SIGNAL, RAILROAD COMMUNICATIONS AND 3RD PARTY UTILITIES AS DESCRIBED


A. THE LIMITS OF THE OVERHEAD CONTACT LINE ZONE BELOW THE TOP OF THE RAIL EXTEND VERTICALLY DOWN TO THE EARTH SURFACE, EXCEPT WHERE THE TRACKS ARE LOCATED ON AN AERIAL STRUCTURE WHERE THEY EXTEND DOWN TO THE AERIAL STRUCTURE DECK. IN THE CASE OF ENERGIZED OUT-OF-RUNNING OCS CONDUCTORS, THE OVERHEAD CONTACT LINE ZONE SHALL BE EXTENDED ACCORDINGLY. THE CLEARANCE ZONES ARE IDENTIFIED HERE IN.

3. THE OCLZ IS EXTENDED LATERALLY TO A DISTANCE OF 2m FROM OUTERMOST LIVE


4. WHERE THE FALL ZONE OF A TERMINATION WIRE OR ATF EXCEEDS THE 4m OF THE STANDARD OCLZ, THE ZONE SHALL BE EXTENDED UP TO A DISTANCE OF 2m FROM

METROLINX	PROJECT	NO.	149724

= METROLINX	ENABLING et gi	TION IMPLEME WORKS ET STAN rounding and bonding ead contact line zone	DARI	
	CONTRACT NO.	DWG. NO.	REV.	SHEET
	QBS-2014-IEP-002	EW-ET-0102	1	XX



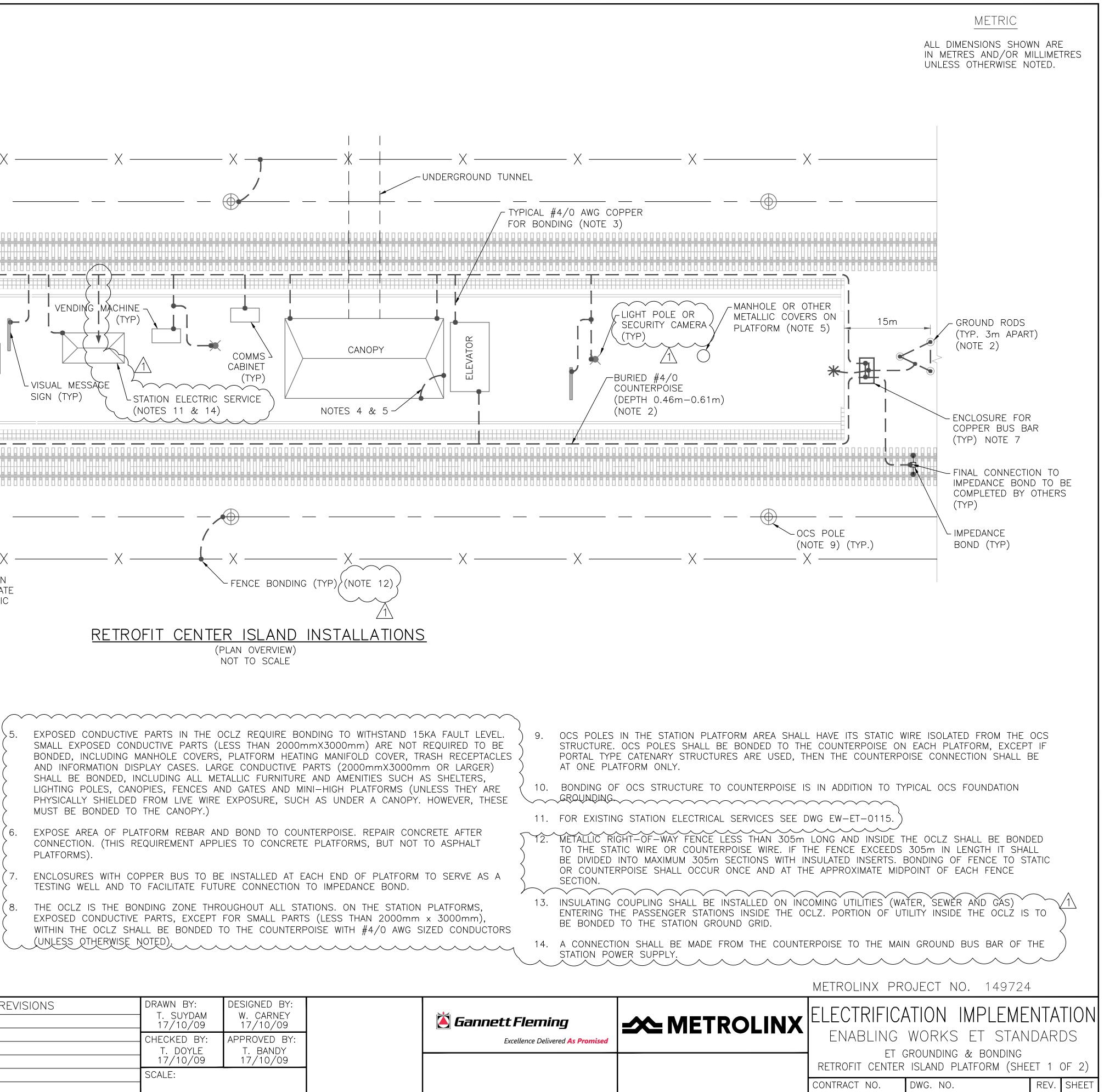
	METRIC
	ALL DIMENSIONS SHOWN ARE
STATIC WIRE	IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.
	MANHOLE OR OTHER METALLIC COVERS ON PLATFORM (NOTE 5)
	- ENCLOSURE FOR COPPER BUS BAR (TYP)(NOTE 7)
IMPEDANCI BOND (TYP	
X	X
	BOND REBAR TO COUNTERPOISE (TYP)(NOTE 6), SEE DWG EW-ET-120 FOR CONNECTION DETAIL
UTILITIES WATER-SEWER-GA	AS STATIC WIRE
	ELECTRICALLY ISOLATED COUPLING (NOTE 13)
ES SHALL BE BONDED TO THE	AS HAVE ITS STATIC WIRE ISOLATED FROM THE OCS COUNTERPOISE ON EACH PLATFORM, EXCEPT IF N THE COUNTERPOISE CONNECTION SHALL BE
RUCTURE TO COUNTERPOISE IS	IN ADDITION TO TYPICAL OCS FOUNDATION
OR COUNTERPOISE WIRE. IF THE	G EW-ET-0115. ONG AND INSIDE THE OCLZ SHALL BE BONDED FENCE EXCEEDS 305m IN LENGTH IT SHALL ULATED INSERTS. BONDING OF FENCE TO STATIC APPROXIMATE MIDPOINT OF EACH FENCE
NGER STATIONS INSIDE THE OCL	MING UTILITIES (WATER, SEWER AND GAS) Z. PORTION OF UTILITY INSIDE THE OCLZ IS TO
PLY. IF THERE IS ONLY ONE POU DISES) ON EACH SIDE OF THE T ITERPOISES, WHILE ONLY ONE CO NE IMPEDANCE BOND SO AS NOT	POISE TO THE MAIN GROUND BUS BAR OF THE VER SUPPLY FOR SEPARATE PLATFORMS (WITH RACKS, UNDERGROUND CONNECTION SHALL BE ONNECTION IS TO BE MADE FROM ONE TO CREATE A CROSS-BOND. METROLINX PROJECT NO. 149724
	ELECTRIFICATION IMPLEMENTATION ENABLING WORKS ET STANDARDS
	ET GROUNDING AND BONDING RETROFIT TRACKSIDE PLATFORM (SHEET 1 OF 2)
	CONTRACT NO.DWG. NO.REV.SHEETQBS-2014-IEP-002EW-ET-01031XX



REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: W. CARNEY 17/10/09	🞽 Gannett Fleming	
	CHECKED BY: T. DOYLE	APPROVED BY: T. BANDY	Excellence Delivered As Promised	
	17/10/09	17/10/09		
	SCALE:			

FENCE (TYP) - OCS MAST (TYP) (NOTE 9) STATIC WIRE BOND REBAR TO COUNTERPOISE (TYP)(NOTE 6), SEE DWG EW-ET-120 FOR CONNECTION DETAIL MINI-HIGH PLATFORM WITH RAILINGS METALLIC 15m STRUCTURE ELECTRICALLY ISOLATED UTILITIES CQUPLING WATER-SEWER-GAS (NOTE 13)  $\wedge \wedge$ WATER SEWER GAS  $\mathsf{J} \sqcup \sqcup$ STATIC WIRE -ADDITIONAL/ALTERNATE LOCATION FOR COUNTERPOISE TO FACILITATE BONDING OF PLATFORM METALLIC OBJECTS (TYP) (NOTE 2) <u>NOTES:</u> 1. SEE DRAWING EW-ET-0101 FOR GENERAL ET GROUNDING AND BONDING NOTES/REQUIREMENTS. THIS DRAWING IS DIAGRAMMATIC, BUT IDENTIFIES THE ET BONDING AND GROUNDING REQUIREMENTS FOR METALLIC OBJECTS IN A TYPICAL EXISTING STATION. 2. A #4/0 AWG, 37 STRAND BARE COPPER WIRE SHALL SERVE AS A COUNTERPOISE TO FACILITATE BONDING OF STATION METALLIC OBJECTS TO THE ELECTRICAL TRACTION RETURN SYSTEM. INSTALLATION LOCATIONS FOR COUNTERPOISE MAY VARY DUE TO ABILITY TO BOND TO METALLIC OBJECTS ON THE PLATFORM. COUNTERPOISE BURIAL DEPTH 0.46m-0.61m. EXTEND EACH END OF COUNTERPOISE 15m BEYOND END OF EACH PLATFORM AND INSTALL GROUND RODS AT 3m SPACING TO ACHIEVE 5 OHMS MAXIMUM RESISTANCE TO GROUND. BONDS TO METALLIC OBJECTS SHALL BE #4/0 AWG (MIN), 37 STRAND BARE COPPER WIRE (UNLESS OTHERWISE NOTED), MODIFICATION OF PLATFORM IS REQUIRED TO ACCOMMODATE THE 1 BONDING CONDUCTOR. THE CONTRACTOR SHALL SUBMIT DETAILS FOR APPROVAL. 4. THE METALLIC CANOPY SHALL BE BONDED TO ITS SUPPORTING STEEL WITH #4/0 AWG CONDUCTORS, ADDITIONAL BONDING IS REQUIRED ON SUPPORT STEEL TO ITS COLUMN MEMBERS TO FACILITATE BONDING TO THE COUNTERPOISE CONDUCTOR. REFERENCE DRAWINGS ISSUE 180713 REVISED PER METROLINX COMMENTS

0 161214 ISSUED AS FINAL EW-ET STANDARDS

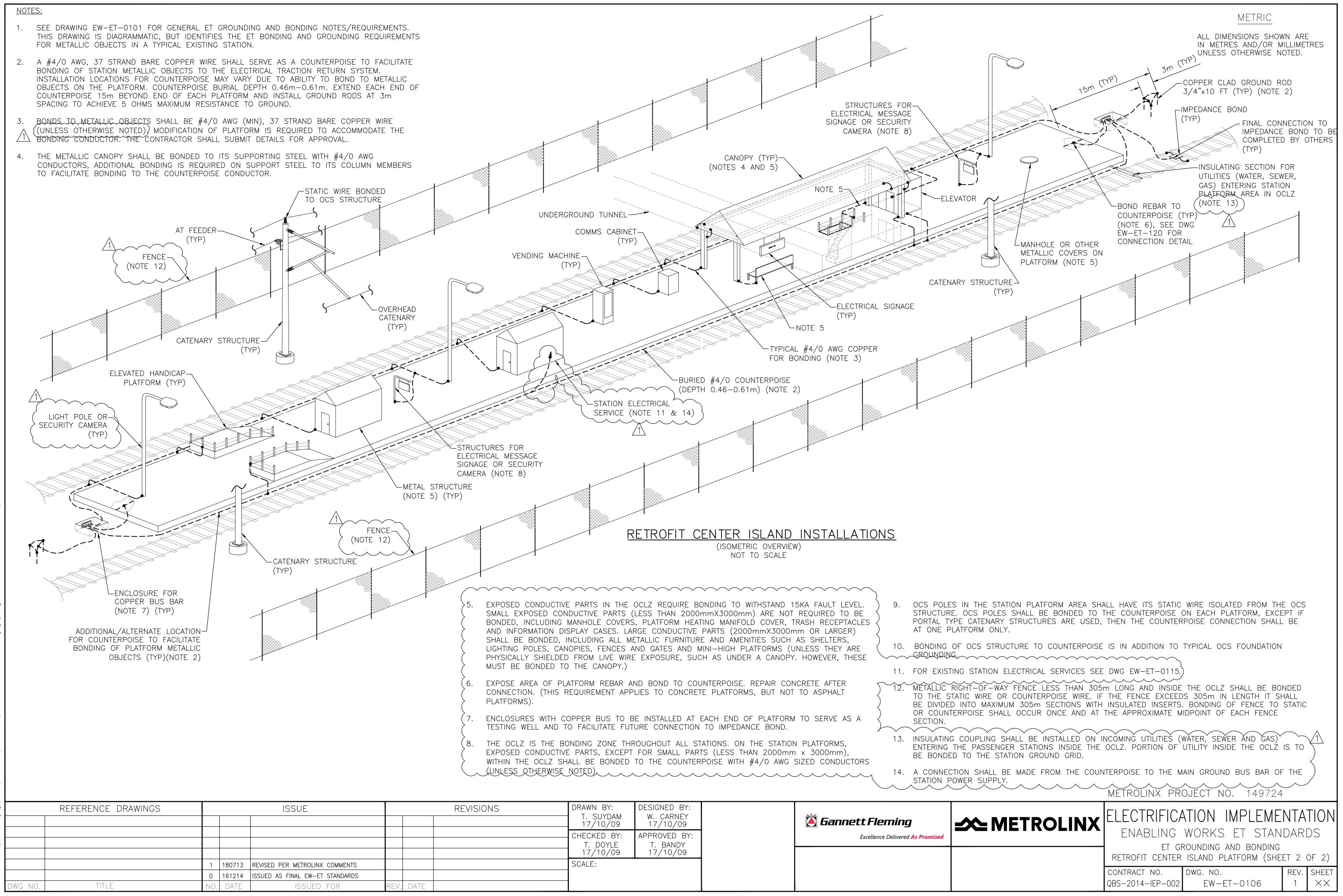

ISSUED FOR

DATE

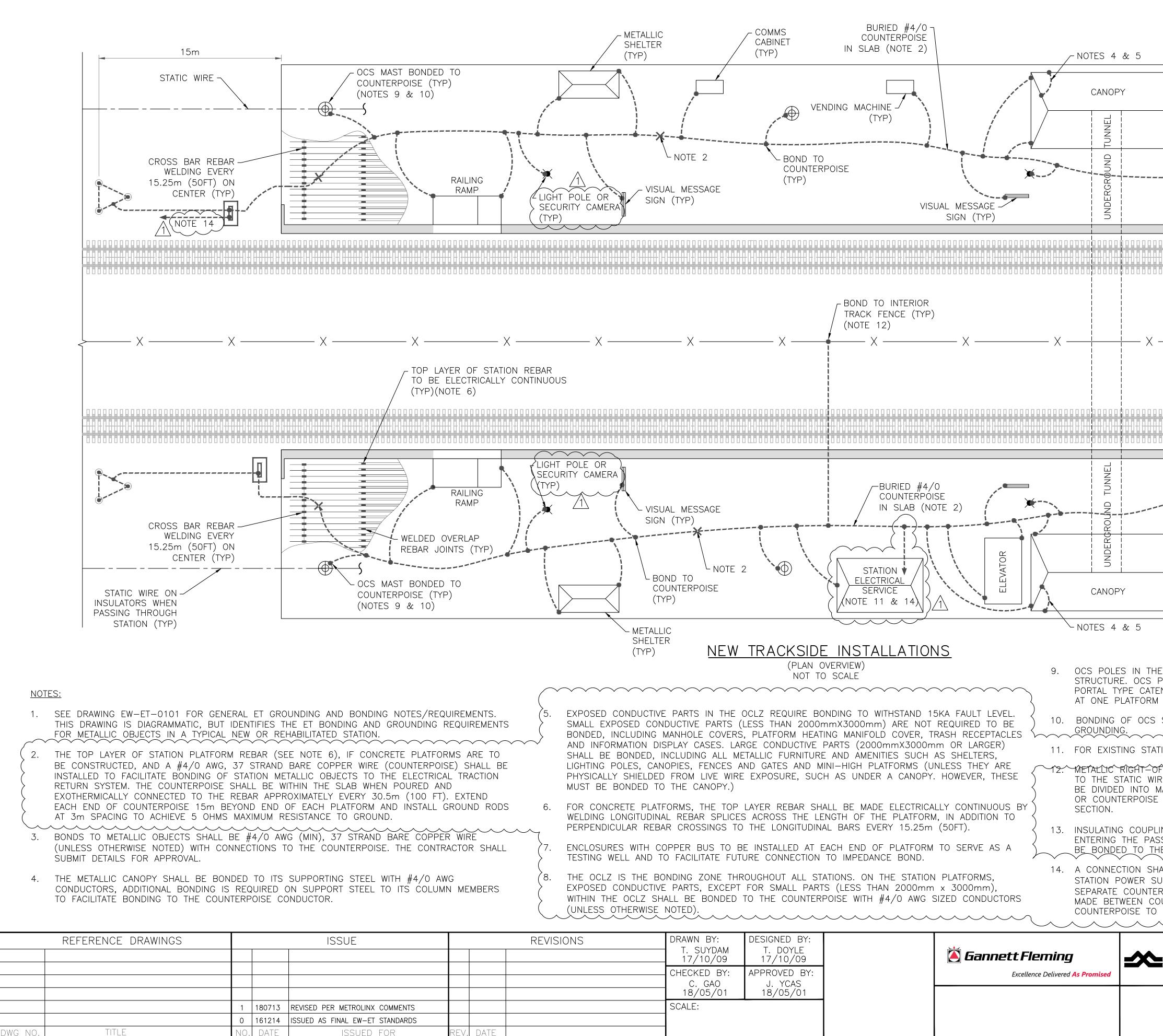
DATE

NG NO.

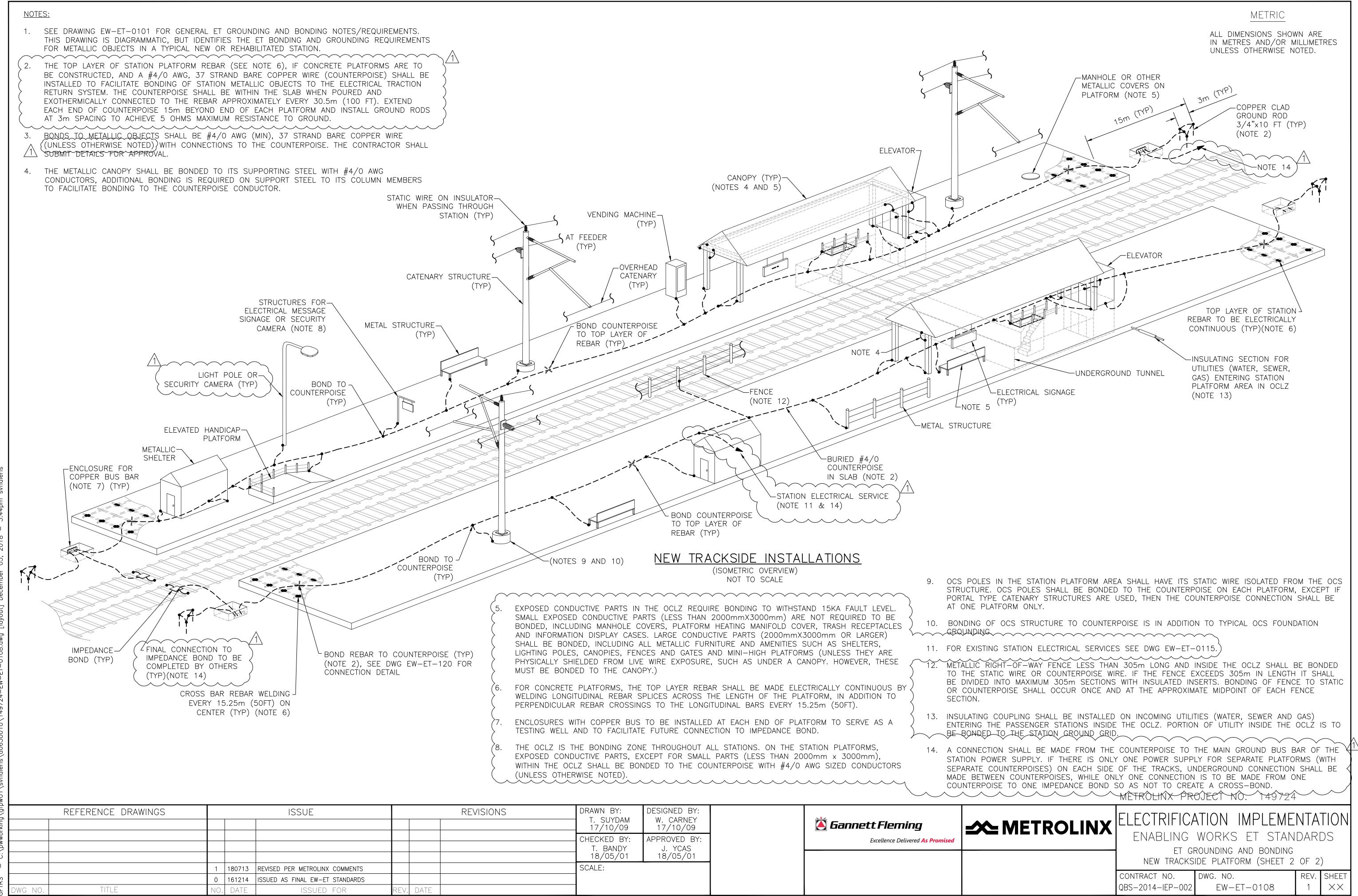
TITLE



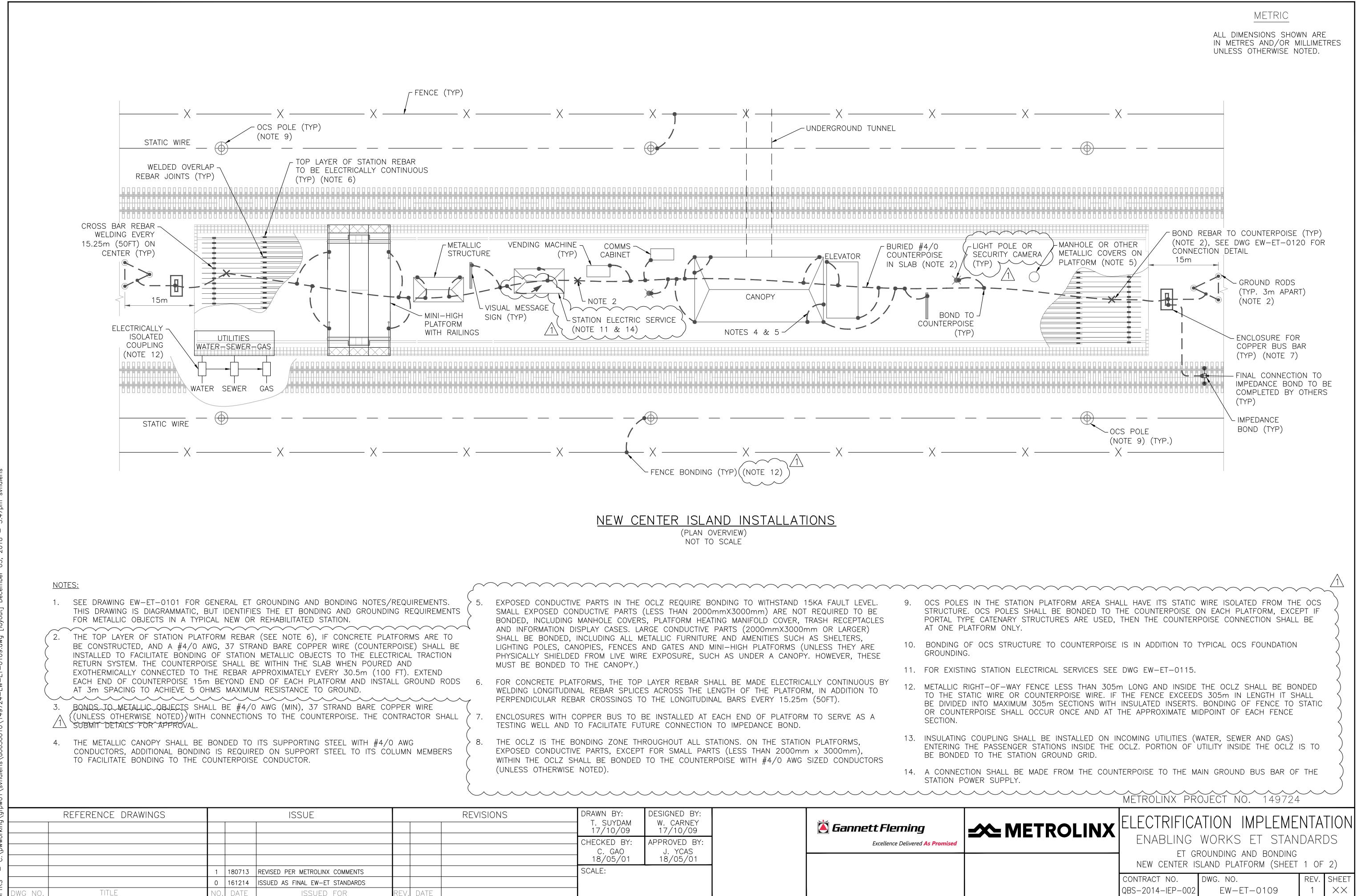

EW-ET-0105


QBS-2014-IEP-002

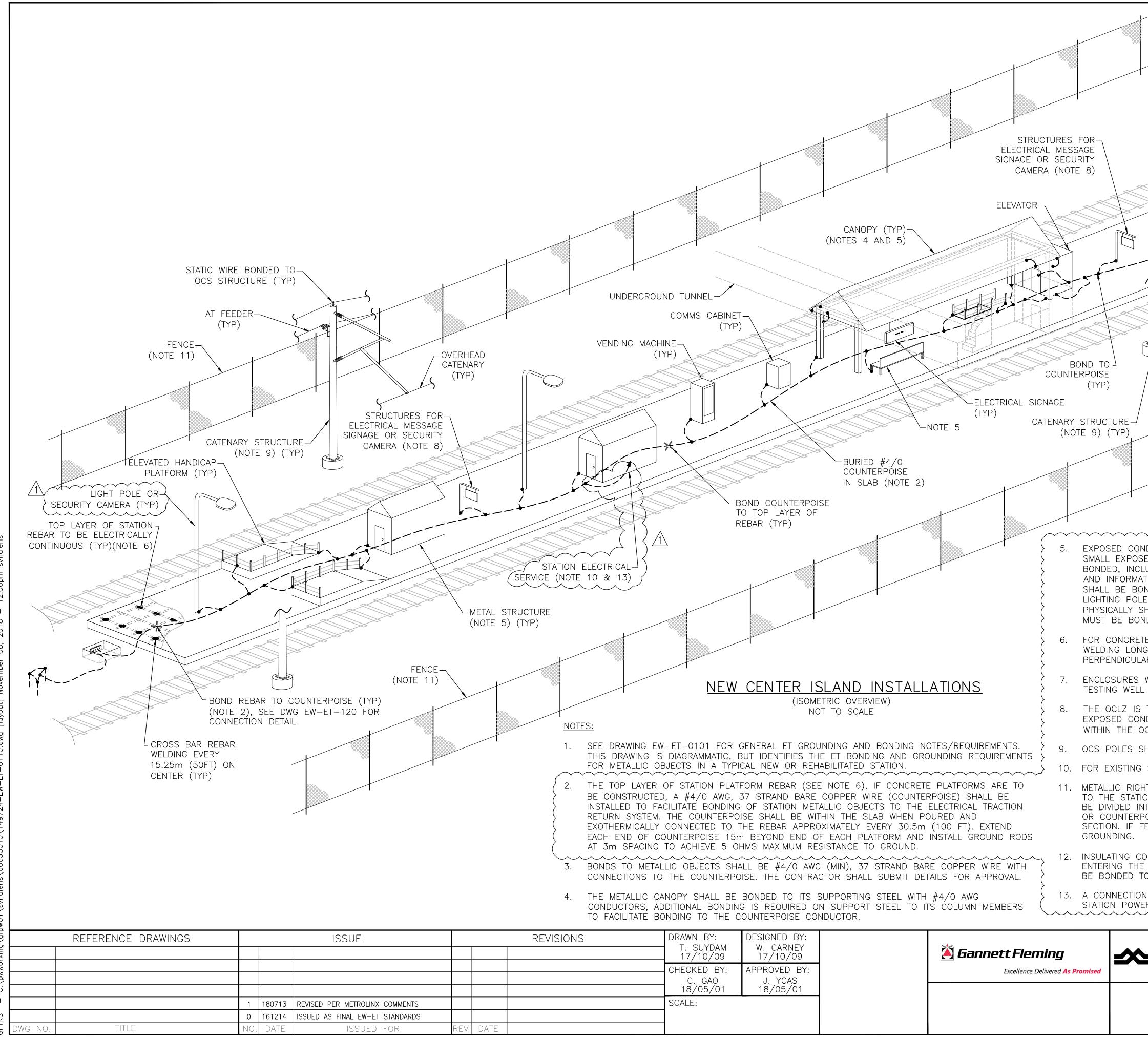
 $\times \times$ 


REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: W. CARNEY 17/10/09	🎽 Gannett Fleming	~
	CHECKED BY: T. DOYLE 17/10/09	APPROVED BY: T. BANDY 17/10/09	Excellence Delivered As Promised	
	SCALE:			



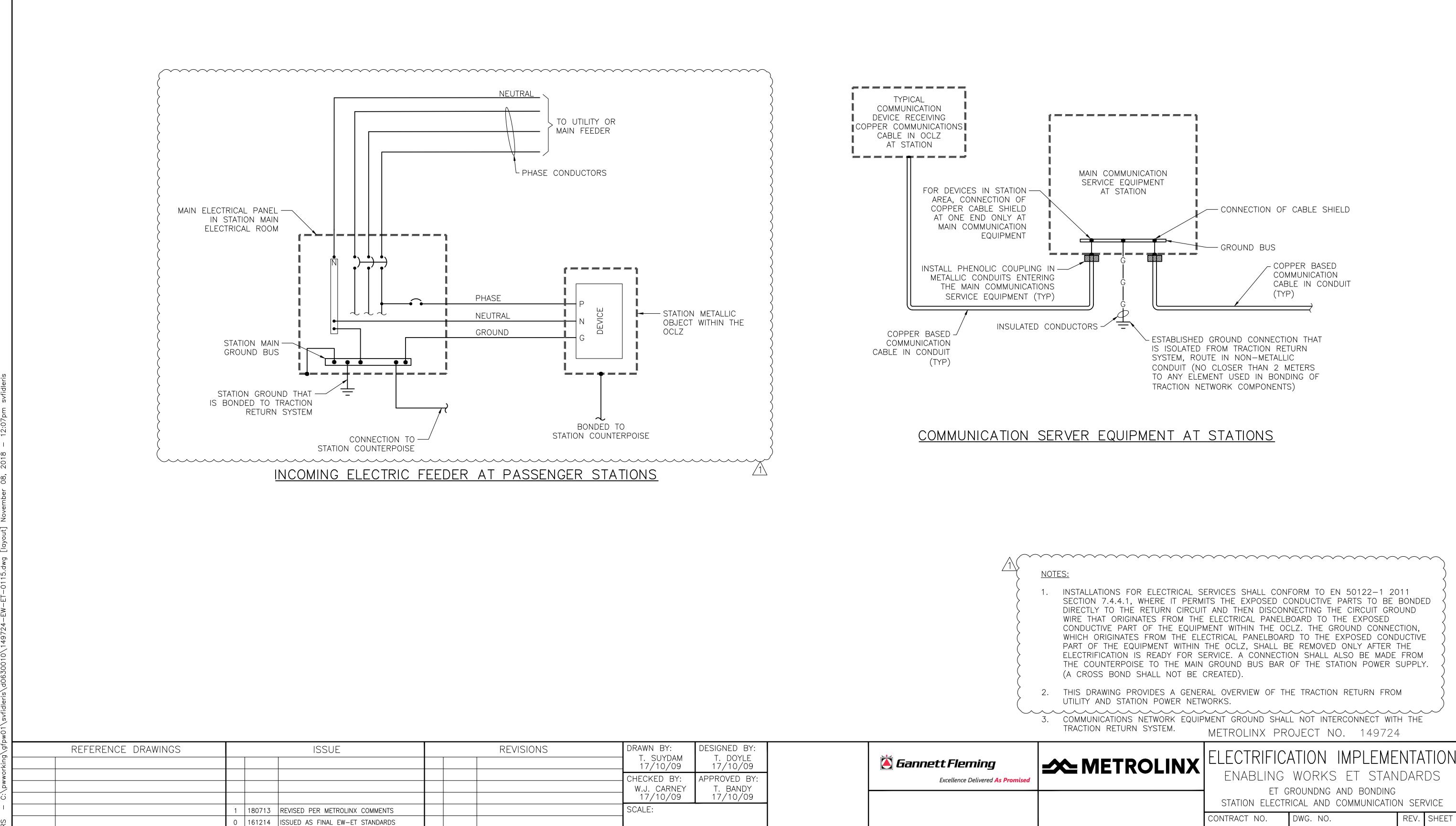

EVISIONS	T. SUYDAM 17/10/09	W. CARNEY 17/10/09	🎽 Gannett Fleming	
	CHECKED BY: T. DOYLE	APPROVED BY: T. BANDY	Excellence Delivered As Promised	
	17/10/09	17/10/09		
	SCALE:			




METRIC
ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES
UNLESS OTHERWISE NOTED.
MANHOLE OR OTHER METALLIC COVERS ON
PLATFORM (NOTE 5)
BOND REBAR TO COUNTERPOISE (TYP)(NOTE 2), SEE DWG EW-ET-120 FOR CONNECTION
DETAIL ENCLOSURE FOR
COPPER BUS BAR (TYP) (NOTE 7)
IMPEDANCE BOND
(TYP)(NOTE 14)
FINAL CONNECTION TO GROUND RODS IMPEDANCE BOND TO BE (TYP 3m APART)
COMPLETED BY OTHERS (NOTE 2) (TYP)
X X X
BOND REBAR TO COUNTERPOISE (TYP)
(NOTE 2), SEE DWG EW-ET-120 FOR CONNECTION DETAIL
UTILITIES WATER-SEWER-GAS
ELECTRICALLY ISOLATED
니 니 니 COUPLING (NOTE 13) WATER SEWER GAS
STATION PLATFORM AREA SHALL HAVE ITS STATIC WIRE ISOLATED FROM THE OCS OLES SHALL BE BONDED TO THE COUNTERPOISE ON EACH PLATFORM, EXCEPT IF
NARY STRUCTURES ARE USED, THEN THE COUNTERPOISE CONNECTION SHALL BE ONLY.
STRUCTURE TO COUNTERPOISE IS IN ADDITION TO TYPICAL OCS FOUNDATION
ION ELECTRICAL SERVICES SEE DWG EW-ET-0115.
-WAY FENCE LESS THAN 305m LONG AND INSIDE THE OCLZ SHALL BE BONDED E OR COUNTERPOISE WIRE. IF THE FENCE EXCEEDS 305m IN LENGTH IT SHALL
AXIMUM 305m SECTIONS WITH INSULATED INSERTS. BONDING OF FENCE TO STATIC SHALL OCCUR ONCE AND AT THE APPROXIMATE MIDPOINT OF EACH FENCE
NO SUALL DE INSTALLED ON INCOMINO LITUITES (MATED SEMED AND SAS)
NG SHALL BE INSTALLED ON INCOMING UTILITIES (WATER, SEWER AND GAS) SENGER STATIONS INSIDE THE OCLZ. PORTION OF UTILITY INSIDE THE OCLZ IS TO E STATION GROUND GRID.
ALL BE MADE FROM THE COUNTERPOISE TO THE MAIN GROUND BUS BAR OF THE 1
PPLY. IF THERE IS ONLY ONE POWER SUPPLY FOR SEPARATE PLATFORMS (WITH RPOISES) ON EACH SIDE OF THE TRACKS, UNDERGROUND CONNECTION SHALL BE
UNTERPOISES, WHILE ONLY ONE CONNECTION IS TO BE MADE FROM ONE ONE IMPEDANCE BOND SO AS NOT TO CREATE A CROSS-BOND. METROLINX/RROJECT_MO. 149724
METROLINX ELECTRIFICATION IMPLEMENTATION
ET GROUNDING AND BONDING
NEW TRACKSIDE PLATFORM (SHEET 1 OF 2) CONTRACT NO. DWG. NO. REV. SHEET
QBS-2014-IEP-002 EW-ET-0107 1 ××



EVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: W. CARNEY 17/10/09	🎽 Gannett Fleming	<u>~</u>
	CHECKED BY: T. BANDY	APPROVED BY: J. YCAS	Excellence Delivered As Promised	
	18/05/01 SCALE:	18/05/01		




C:\pwworking\gfpw01\svfidleris\d0630010\149724-EW-ET-0109.dwg [layout] December 05, 2018 - 3:47pm sv



C:\pwworking\gfpw01\svfidleris\d0630010\149724-EW-ET-0110.dwg [layout] November 08, 2018 - 12:06pm svfidle

-	METRIC
	ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES
~	UNLESS OTHERWISE NOTED.
	DTHER
METALLIC COVE PLATFORM (NOT	
15m (T	(P)COPPER CLAD
1511	3/4"x10 FT (TYP)
	(NOTE 2)
	IMPEDANCE BOND TO BE COMPLETED BY OTHERS
	(TYP)
	IMPEDANCE BOND (TYP)
	-ENCLOSURE FOR
WELDED O	COPPER BUS BAR VERLAP (NOTE 7) (TYP)
REBAR JOI	NTS (TYP)
LINSULATING SECTION FO UTILITIES (WATER, SEWE	R,
GAS) ENTERING STATION PLATFORM AREA IN OCL	
(NOTE 12)	
ED CONDUCTIVE PARTS (LESS T	EQUIRE BONDING TO WITHSTAND 15KA FAULT LEVEL. ) HAN 2000mmX3000mm) ARE NOT REQUIRED TO BE ) FORM HEATING MANIFOLD COVER, TRASH RECEPTACLES }
TION DISPLAY CASES. LARGE CO	NDUCTIVE PARTS (2000mmX3000mm OR LARGER)          FURNITURE AND AMENITIES SUCH AS SHELTERS,
HIELDED FROM LIVE WIRE EXPOS	TES AND MINI-HIGH PLATFORMS (UNLESS THEY ARE SURE, SUCH AS UNDER A CANOPY. HOWEVER, THESE
DED TO THE CANOPY.)	REBAR SHALL BE MADE ELECTRICALLY CONTINUOUS BY
GITUDINAL REBAR SPLICES ACRO	SS THE LENGTH OF THE PLATFORM, IN ADDITION TO
	ALLED AT EACH END OF PLATFORM TO SERVE AS A
	UNNECTION TO IMPEDANCE BOND.
DUCTIVE PARTS, EXCEPT FOR S	MALL PARTS (LESS THAN 2000mm x 3000mm), COUNTERPOISE WITH #4/0 AWG SIZED CONDUCTORS.
HALL BE BONDED TO ITS STATIC	····
STATION ELECTRICAL SERVICES	SEE DWG EW-ET-0115.
C WIRE OR COUNTERPOISE WIRE	305m LONG AND INSIDE THE OCLZ SHALL BE BONDED
OISE SHALL OCCUR ONCE AND	VITH INSULATED INSERTS. BONDING OF FENCE TO STATIC ( AT THE APPROXIMATE MIDPOINT OF EACH FENCE ) DOES NOT REQUIRE ADDITIONAL BONDING OR
PASSENGER STATIONS INSIDE T	N INCOMING UTILITIES (WATER, SEWER AND GAS)
) THE STATION GROUND GRID.	OUNTERPOISE TO THE MAIN GROUND BUS OF THE
R SUPPLY.	METROLINX PROJECT NO. 149724
= METROLINX	ELECTRIFICATION IMPLEMENTATION
	ENABLING WORKS ET STANDARDS et grounding and bonding
	NEW CENTER ISLAND PLATFORM (SHEET 2 OF 2) CONTRACT NO. DWG. NO. REV. SHEET
	CONTRACT NO.DWG. NO.REV.SHEETQBS-2014-IEP-002EW-ET-01101XX



TITLE

VG NO

ISSUED FOR

DATE

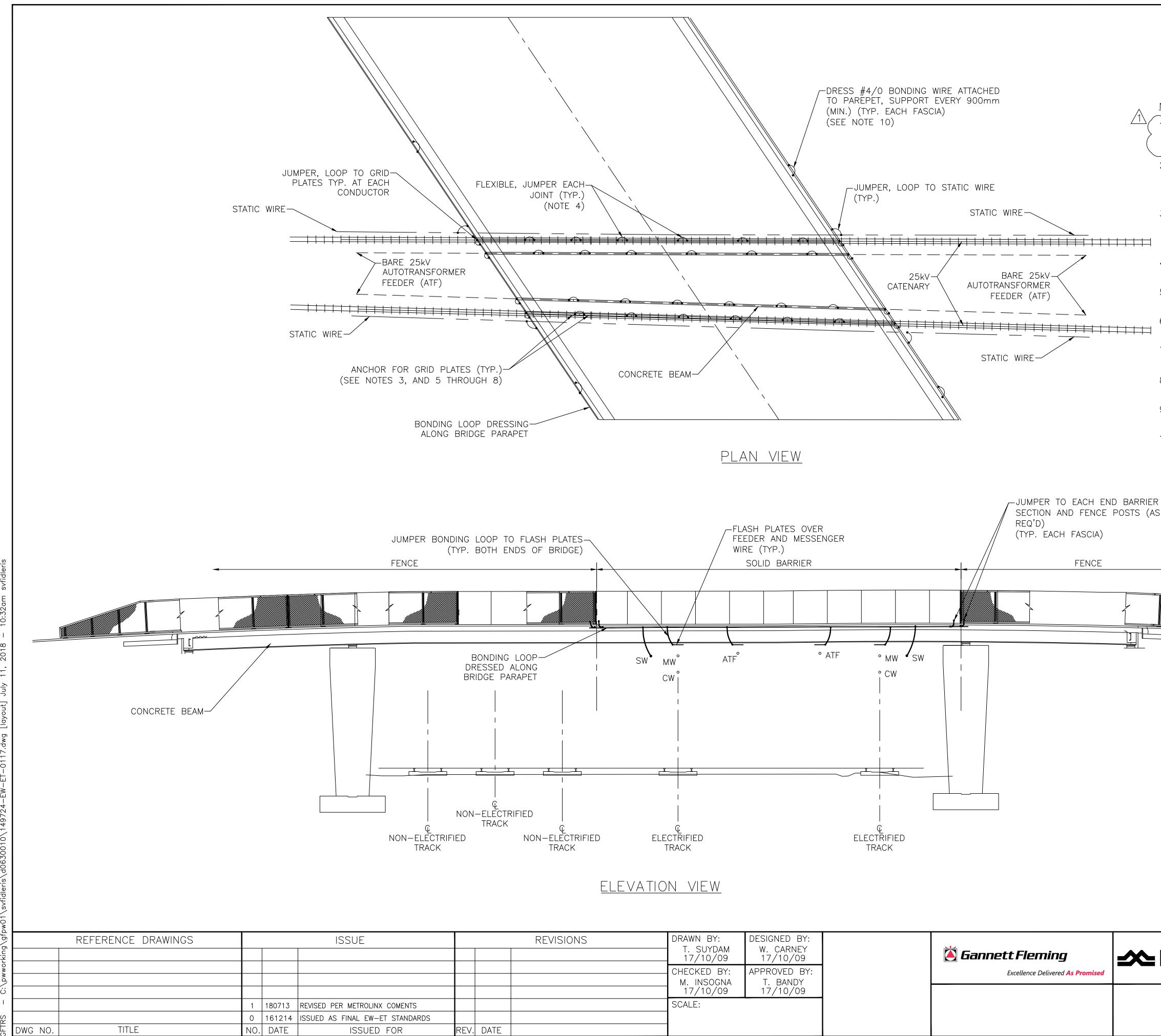
RFV

DATE

REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: T. DOYLE 17/10/09	🎽 Gannett Fleming	~
	CHECKED BY: W.J. CARNEY	APPROVED BY: T. BANDY	Excellence Delivered As Promised	
	17/10/09	17/10/09		
	SCALE:			


## METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.


 $\times \times$ 

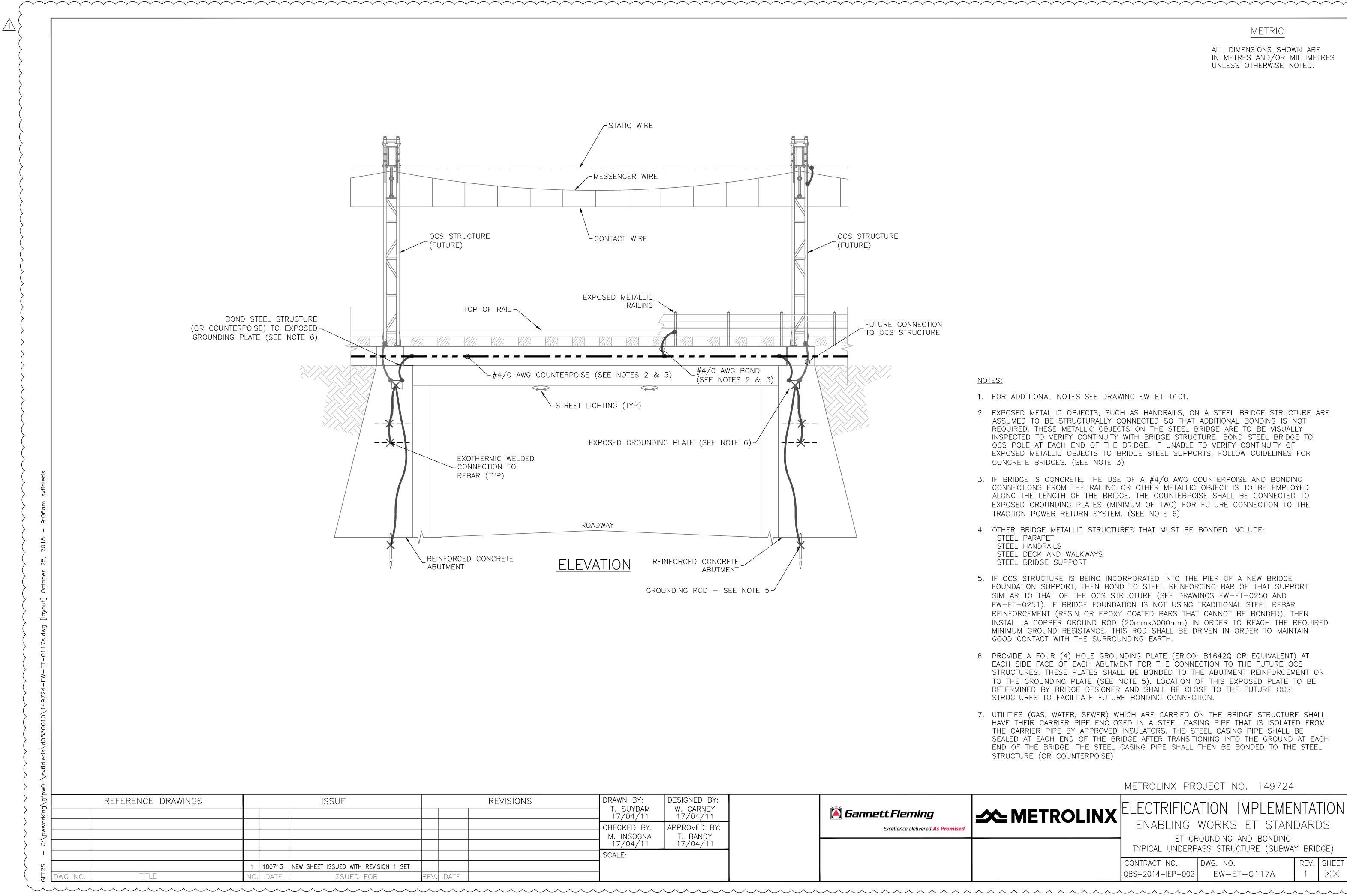
QBS-2014-IEP-002

EW-ET-0115



S — C:\pwworking\gfpw01\svfidleris\d0630010\149724—EW—ET—0116.dwg [LAYOUT] November 08, 2018 — 12:07pm svfidle




REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: W. CARNEY 17/10/09		🎽 Gannett Fleming	
	CHECKED BY: M. INSOGNA	APPROVED BY: T. BANDY		Excellence Delivered As Promised	
	17/10/09	17/10/09	-		
	SCALE:				

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

NOTES:

	NOTES/REQUIREMENTS. BONDING AND GROUND						ET
2.	FLASH PLATES TO BE BUTT JOINT BETWEEN F BRIDGE BEAMS. FLASH 25KV <= 915mm, SEI	PLATES TO E PLATES ON	BE ALIGNE LY REQUIF	D WITH JO RED WHERE	NT BETWEEN CLEARANCE T		IRES.
3.	STRUT INSERTS SHALL ALL NEW CONCRETE BI INSERT SHALL BE DRIL WHEN DRILLING PRE—S	RIDGES. FOR LED IN. SPE	R EXISTING ECIAL CON	CONCRETE	E BRIDGE, MEC SHALL BE TA	HANICAL KEN	
4.	EACH PLATE TO BE JU BE TAPPED TO THE BO			T. EACH EI	ND PLATE TO		
5.	ALL ANCHORS INSTALLE VOID DRAIN HOLES WH			CONCRETE	TO BE IN LIN	IE WITH	
6.	ALL STRANDS TO BE L DRILLING OF PRE-STRI				ter before a	NY	
7.	JIG TO BE USED WHEN TO PREVENT BIT FROM					BEAMS	
8.	PROVIDE (4) ANCHORS THE GRID PLATES.					GTH OF	
9.	ALTERNATE MATERIAL F BY THE FINAL DESIGN.	OR SOLID B	ARRIERS	MAY BE PR	OPOSED FOR A	APPROV.	AL
10.	BONDING WIRE SHALL I RESISTANT CONDUCTOR					ON	
		450mm < CLEARANCE < 915mm USE 610mm WIDE PLATE	E <= 450mm m WIDE PLATE	Cu Pl 305mm	COSION RESISTA DUCTIVE METAL ATE (SEE NOT ROSION RESISTA DUCTIVE METAL H PLATE 	AL FLA E 4)	SH
			CLEARANCE USE 305mm				
		<u>FLAS</u>	<u>H PLA</u> not to	<u>ATE DE</u> scale	<u>tail</u>		
		METROL	INX PR	OJECT N	0. 149724	1	
M	ETROLINX	ELECT	ET B		IMPLEME ET STAN d grounding rete bridge	NTA Idari	TION DS
		CONTRACT QBS-2014		DWG. NO. EW—	ET-0117	REV. 1	SHEET XX

SEE DRAWING EW-ET-0101 FOR GENERAL ET GROUNDING AND BONDING



EVISIONS	DRAWN BY: T. SUYDAM 17/04/11	DESIGNED BY: W. CARNEY 17/04/11	🎽 Gannett Fleming	ELECTRIFICA	TION IMPLEME	NTAT	ION
	CHECKED BY: M. INSOGNA 17/04/11	APPROVED BY: T. BANDY 17/04/11	Excellence Delivered As Promised	ET GR	COUNDING AND BONDING		_
	SCALE:	1770+711			ASS STRUCTURE (SUBWA DWG. NO. EW—ET—0117A		OGE) SHEET XX

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

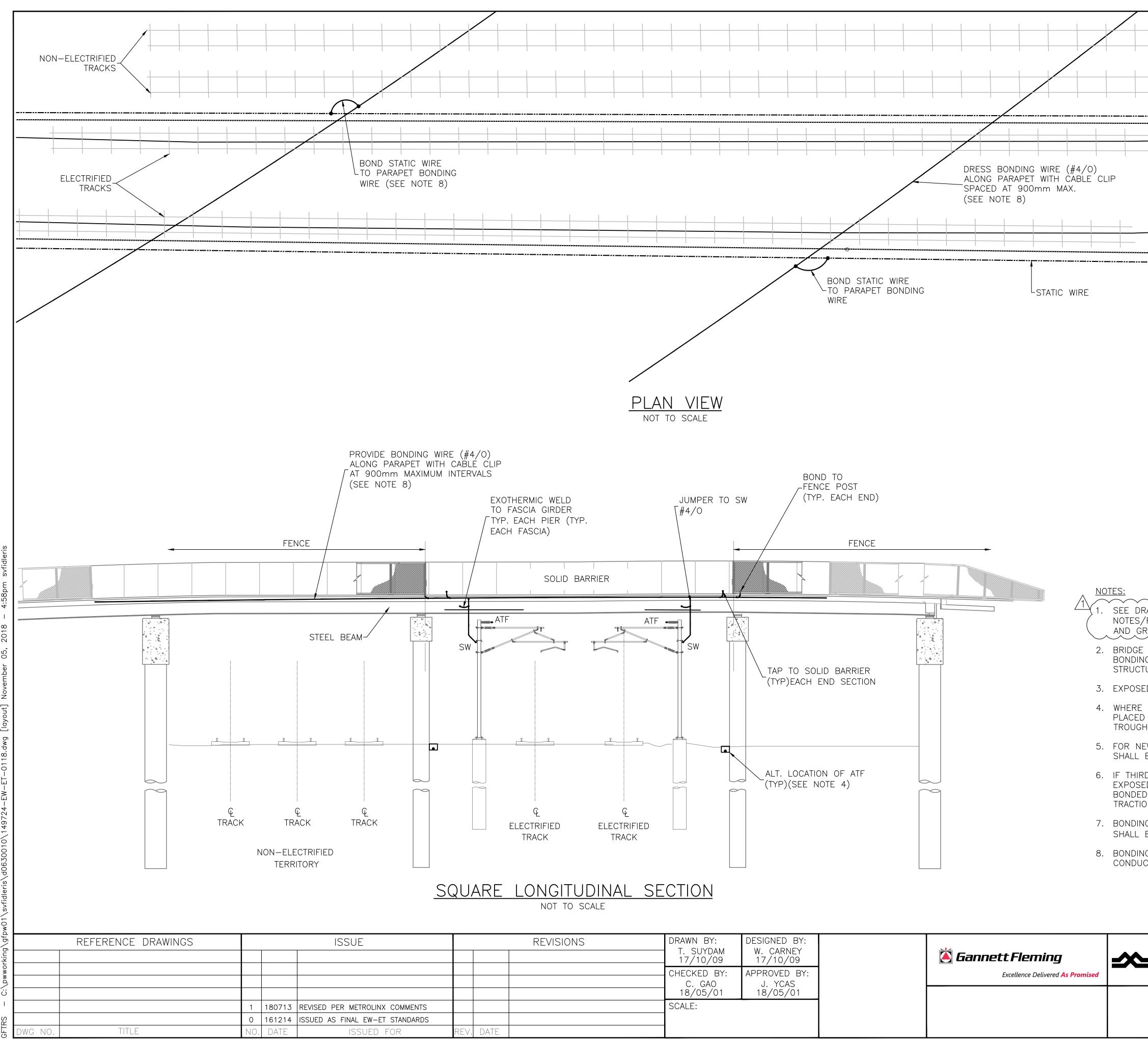
1. FOR ADDITIONAL NOTES SEE DRAWING EW-ET-0101.

2. EXPOSED METALLIC OBJECTS, SUCH AS HANDRAILS, ON A STEEL BRIDGE STRUCTURE ARE ASSUMED TO BE STRUCTURALLY CONNECTED SO THAT ADDITIONAL BONDING IS NOT REQUIRED. THESE METALLIC OBJECTS ON THE STEEL BRIDGE ARE TO BE VISUALLY INSPECTED TO VERIFY CONTINUITY WITH BRIDGE STRUCTURE. BOND STEEL BRIDGE TO OCS POLE AT EACH END OF THE BRIDGE. IF UNABLE TO VERIFY CONTINUITY OF EXPOSED METALLIC OBJECTS TO BRIDGE STEEL SUPPORTS, FOLLOW GUIDELINES FOR CONCRETE BRIDGES. (SEE NOTE 3)

3. IF BRIDGE IS CONCRETE, THE USE OF A #4/0 AWG COUNTERPOISE AND BONDING CONNECTIONS FROM THE RAILING OR OTHER METALLIC OBJECT IS TO BE EMPLOYED ALONG THE LENGTH OF THE BRIDGE. THE COUNTERPOISE SHALL BE CONNECTED TO EXPOSED GROUNDING PLATES (MINIMUM OF TWO) FOR FUTURE CONNECTION TO THE TRACTION POWER RETURN SYSTEM. (SEE NOTE 6)

4. OTHER BRIDGE METALLIC STRUCTURES THAT MUST BE BONDED INCLUDE:

STEEL PARAPET STEEL HANDRAILS


STEEL DECK AND WALKWAYS

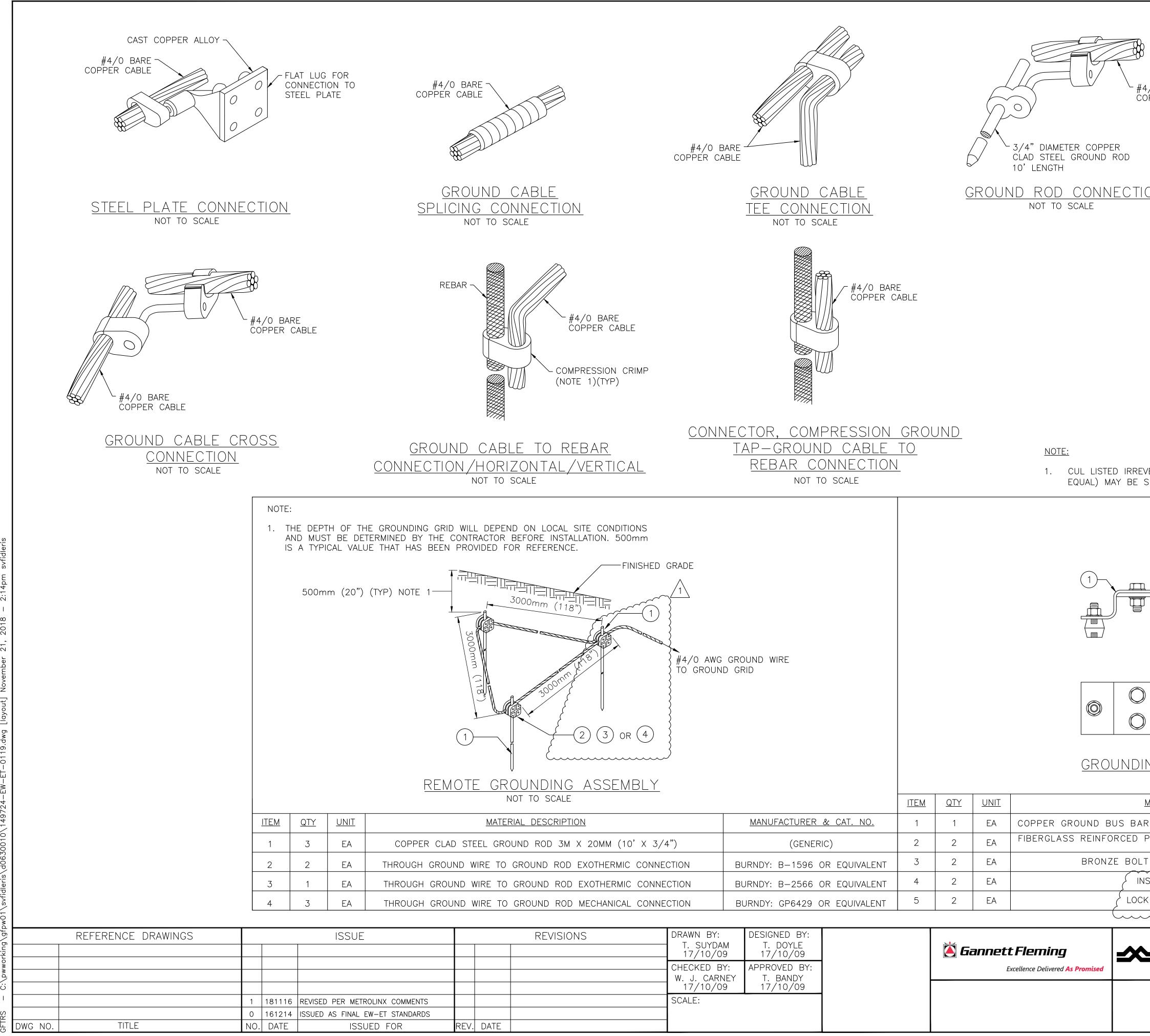
STEEL BRIDGE SUPPORT

5. IF OCS STRUCTURE IS BEING INCORPORATED INTO THE PIER OF A NEW BRIDGE FOUNDATION SUPPORT, THEN BOND TO STEEL REINFORCING BAR OF THAT SUPPORT SIMILAR TO THAT OF THE OCS STRUCTURE (SEE DRAWINGS EW-ET-0250 AND EW-ET-0251). IF BRIDGE FOUNDATION IS NOT USING TRADITIONAL STEEL REBAR REINFORCEMENT (RESIN OR EPOXY COATED BARS THAT CANNOT BE BONDED), THEN INSTALL A COPPER GROUND ROD (20mmx3000mm) IN ORDER TO REACH THE REQUIRED MINIMUM GROUND RESISTANCE. THIS ROD SHALL BE DRIVEN IN ORDER TO MAINTAIN GOOD CONTACT WITH THE SURROUNDING EARTH.

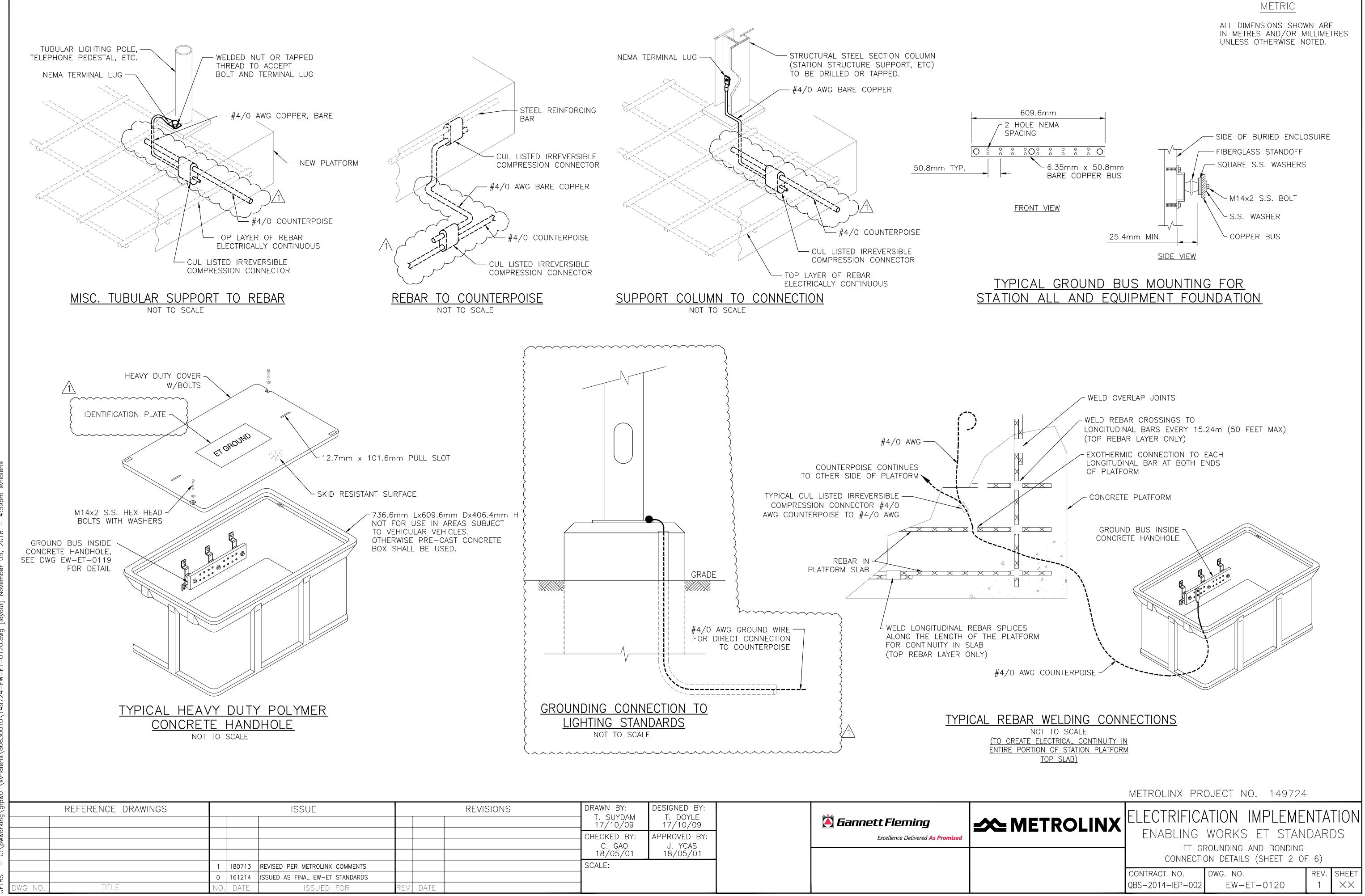
6. PROVIDE A FOUR (4) HOLE GROUNDING PLATE (ERICO: B1642Q OR EQUIVALENT) AT EACH SIDE FACE OF EACH ABUTMENT FOR THE CONNECTION TO THE FUTURE OCS STRUCTURES. THESE PLATES SHALL BE BONDED TO THE ABUTMENT REINFORCEMENT OR TO THE GROUNDING PLATE (SEE NOTE 5). LOCATION OF THIS EXPOSED PLATE TO BE DETERMINED BY BRIDGE DESIGNER AND SHALL BE CLOSE TO THE FUTURE OCS STRUCTURES TO FACILITATE FUTURE BONDING CONNECTION.

7. UTILITIES (GAS, WATER, SEWER) WHICH ARE CARRIED ON THE BRIDGE STRUCTURE SHALL HAVE THEIR CARRIER PIPE ENCLOSED IN A STEEL CASING PIPE THAT IS ISOLATED FROM THE CARRIER PIPE BY APPROVED INSULATORS. THE STEEL CASING PIPE SHALL BE SEALED AT EACH END OF THE BRIDGE AFTER TRANSITIONING INTO THE GROUND AT EACH END OF THE BRIDGE. THE STEEL CASING PIPE SHALL THEN BE BONDED TO THE STEEL STRUCTURE (OR COUNTERPOISE)

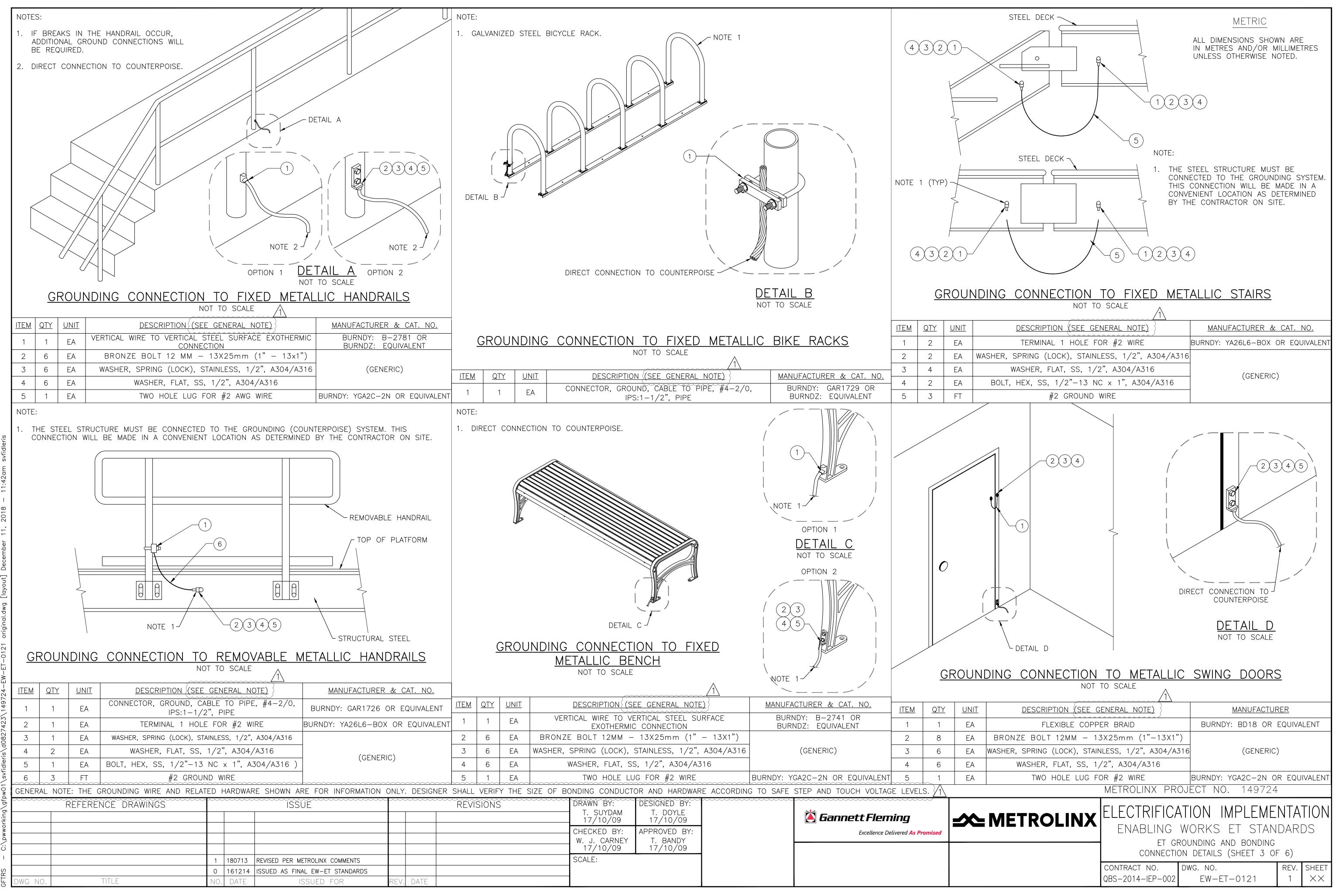


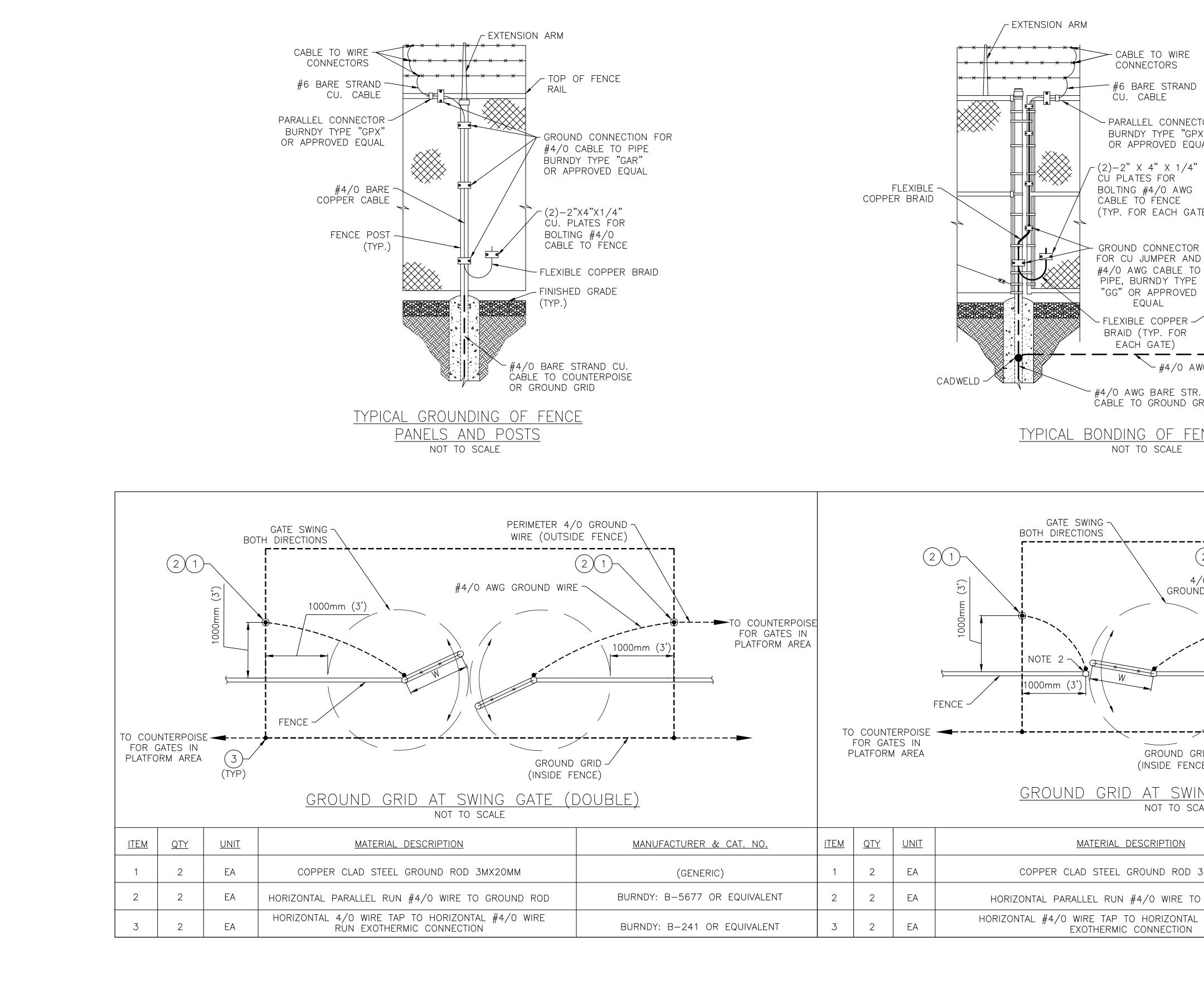

REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: W. CARNEY 17/10/09	🎽 Gannett Fleming	<u>~</u>
		APPROVED BY: J. YCAS	Excellence Delivered As Promised	
	C. GAO 18/05/01	J. YCAS 18/05/01		
	SCALE:			

		METRIC
	IN METRES	ISIONS SHOWN ARE 5 AND/OR MILLIMETRES ITHERWISE NOTED.
25kV BA		
	ANSFORMER FEEDER	
25kV CATENAR	Ý	
 25kV BA	ARE	
AUTOTRA	ANSFORMER FEEDER	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim\sim\sim$
/REQUIREMENTS. THIS DRAWING	ERAL ET GROUNDING AND BONDING IS DIAGRAMMATIC, BUT IDENTIFIES	
	CHEMATIC IN NATURE TO SHOW GR	
NG, AND DO NOT PORTRAY EXIS TURE ASSEMBLY.	TING BRIDGE CONDITIONS OR PROF	POSED OCS
ED METALLIC FENCE SHALL BE		
D IN ITS NORMAL LOCATION, TH	S NOT ALLOW THE AUTOTRANSFORM E CONDUCTOR SHALL BE CABLED A OR AERIALLY ON OCS STRUCTURES	AND ROUTED IN
IEW CONSTRUCTION, UNINSULATE BE BONDED TO THE BONDING	D METALLIC UTILITIES RUNNING WIT	THIN THE BRIDGE
RD PARTY ELECTRICAL SERVICE	POWER EQUIPMENT IS LESS THAN	
	IDGE, THIRD PARTY GROUNDS SHA D METALLIC PARTS THAT ARE BON	
NG CABLES TO EXPOSED CONDU	ICTIVE PARTS, UTILITIES AND ELECT PE JACKET OR APPROVED EQUAL.	FRICAL SERVICES
NG WIRE SHALL BE COPPER, CO	PPERWELD OR OTHER CORROSION	RESISTANT
JCTOR SUITABLE FOR EXPOSURE	TO ROAD SALT.	
	METROLINX PROJECT NO.	149724
	ELECTRIFICATION IM	IPLEMENTATION
	ENABLING WORKS E	ET STANDARDS
	ET GROUNDING AND TYPICAL STEEL	
	CONTRACT NO. DWG. NO.	REV. SHEET


QBS-2014-IEP-002 EW-ET-0118

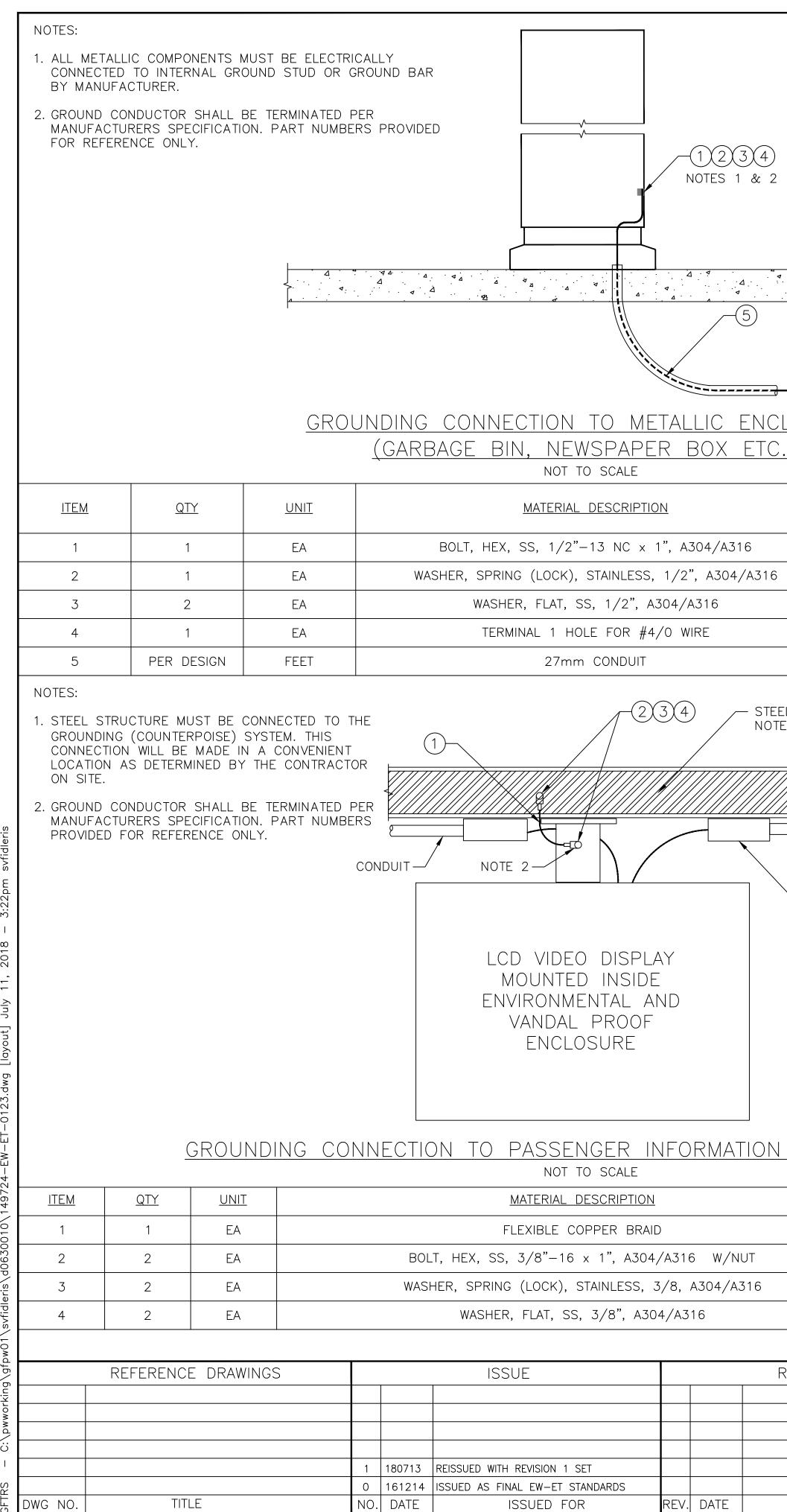
METRIC


1 XX



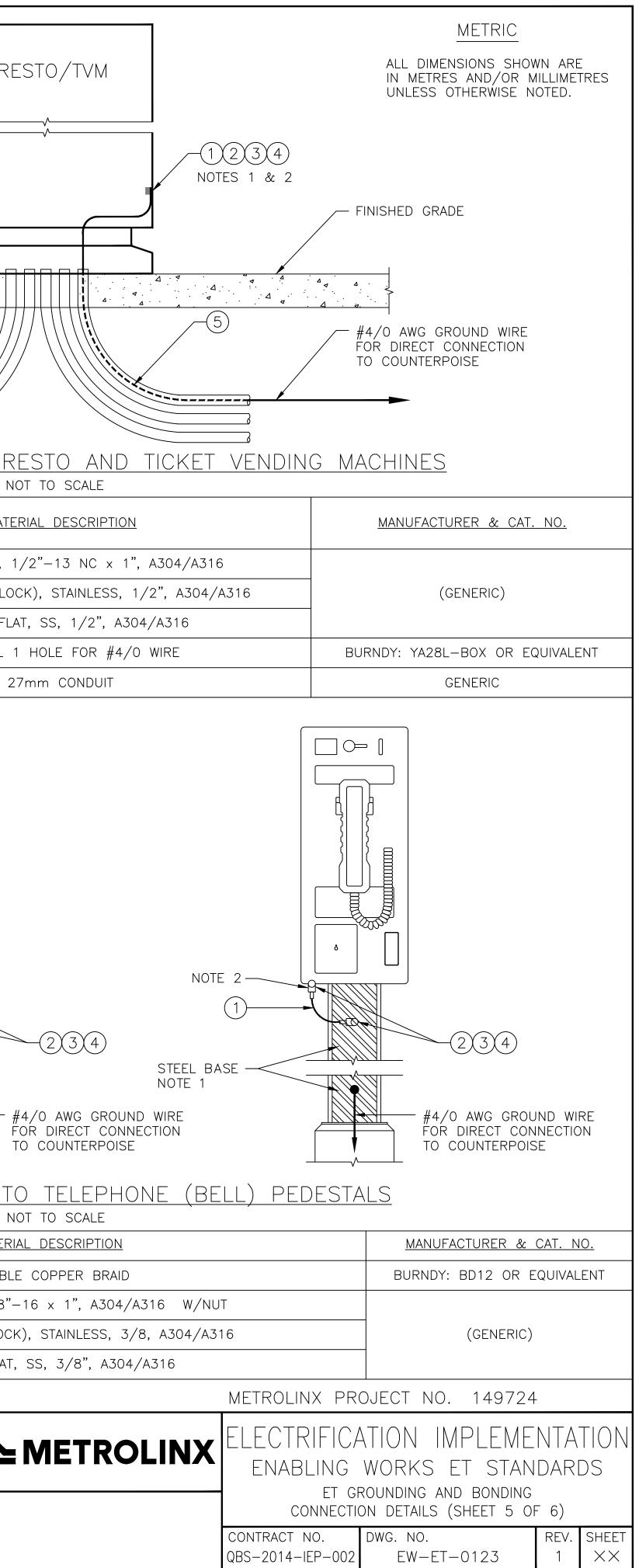
		METRIC	
		ALL DIMENSIONS SHO	MILLIMETRES
	∕− #4/0	UNLESS OTHERWISE N D BARE	NOTED.
4/0 BARE DPPER CABLE	ČÓP	PER CABLE	TION
		FOR CONNEC TO GROUND	
$\bigcirc \mathbb{N}$	ground (ABLE TO 2-HC) F
<u>on</u>	TERMIN	AL CONNECTION	
	IN	OT TO SCALE	
VERSIBLE COMPRESSION CRIMPIN		•	R
SUBSTITUTED WITH EXOTHERMIC	WELDED CONNECTION	NS	
4	$\overline{}$		
	2		
000000			
NC CODED DAD A			
NG COPPER BAR A NOT TO SCALE	<u>SSEMBLY</u>		
MATERIAL DESCRIPTION		MANUFACTURER & CA	<u>.T. NO.</u>
R 6mm x 50mm x 300mm (¼" POLYESTER INSULATOR W/12r		(GENERIC)	
THREADED HOLES T 12MM - 13x25mm $(1" - 13)$		ERICO: 559686 OR EQ	
SULATED WASHER, 1/2"		(GENERIC)	
K WASHER, BRONZE, 1/2"			
	METROLINX PR		
		ATION IMPLEME works et stap	
	ET G	ROUNDING AND BONDING ON DETAILS (SHEET 1 C	2
	CONTRACT NO.	DWG. NO.	REV. SHEET
	QBS-2014-IEP-002	EW-ET-0119	1 ××

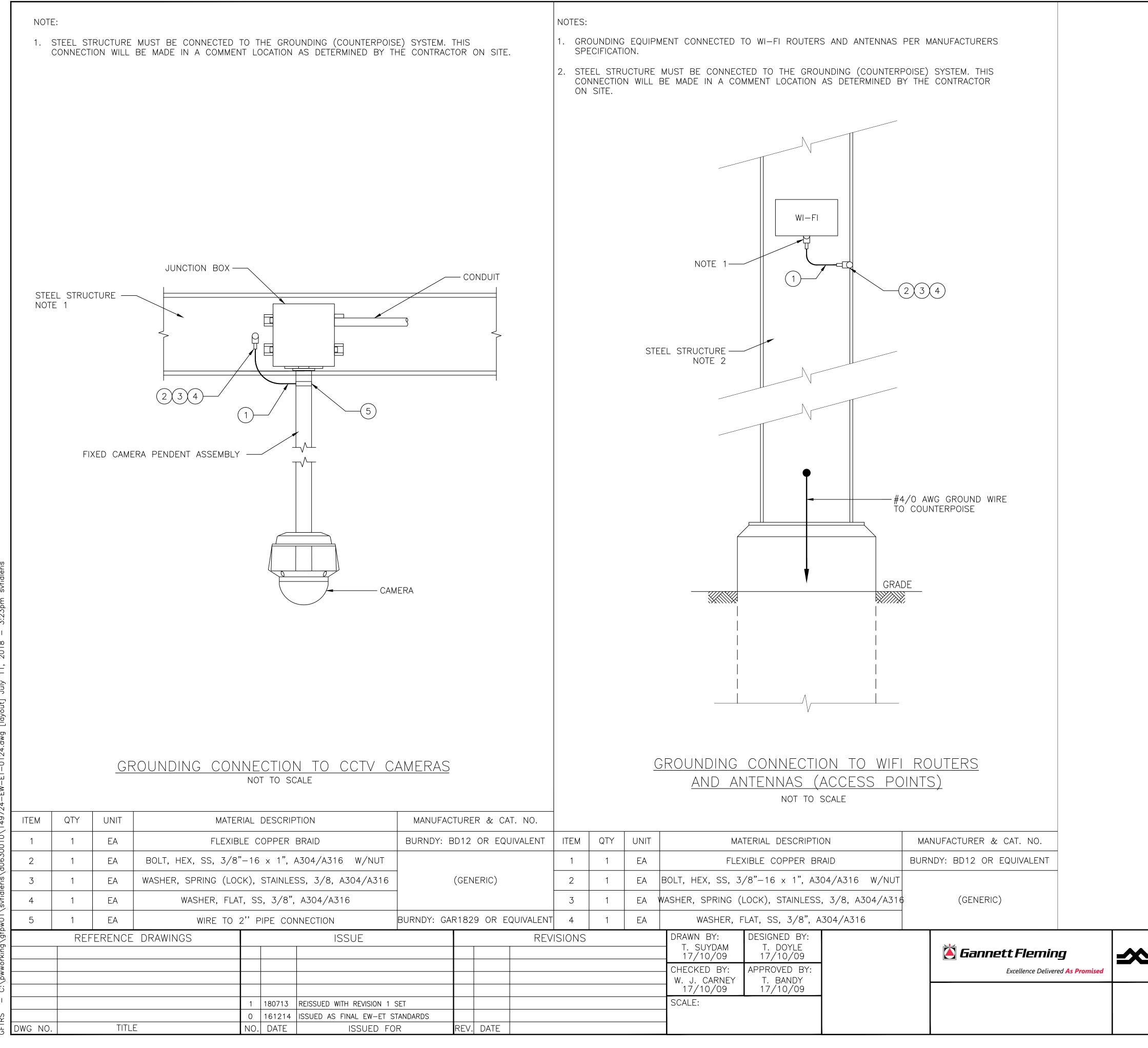
		DESIGNED BY:	DRAWN BY:	REVISIONS
 🎽 Gannett Fleming		T. DOYLE 17/10/09	T. SUYDAM 17/10/09	
Excellence Delivered As Promised		APPROVED BY:	CHECKED BY: C. GAO	
	(0 1	J. YCAS 18/05/01	18/05/01	
			SCALE:	


) (
		REFERENCE DRAWINGS			ISSUE			R
) :								
)								
			1	180713	REISSUED WITH REVISION 1 SET			
)			0	161214	ISSUED AS FINAL EW-ET STANDARDS			
5	DWG NO.	TITLE	NO.	DATE	ISSUED FOR	REV.	DATE	

REVISIONS	DRAWN BY: T. SUYDAM 17/10/09	DESIGNED BY: T. DOYLE 17/10/09	🎽 Gannett Fleming	<u>~</u>
	CHECKED BY: W. J. CARNEY	APPROVED BY: T. BANDY	Excellence Delivered As Promised	
	17/10/09	17/10/09		
	SCALE:			

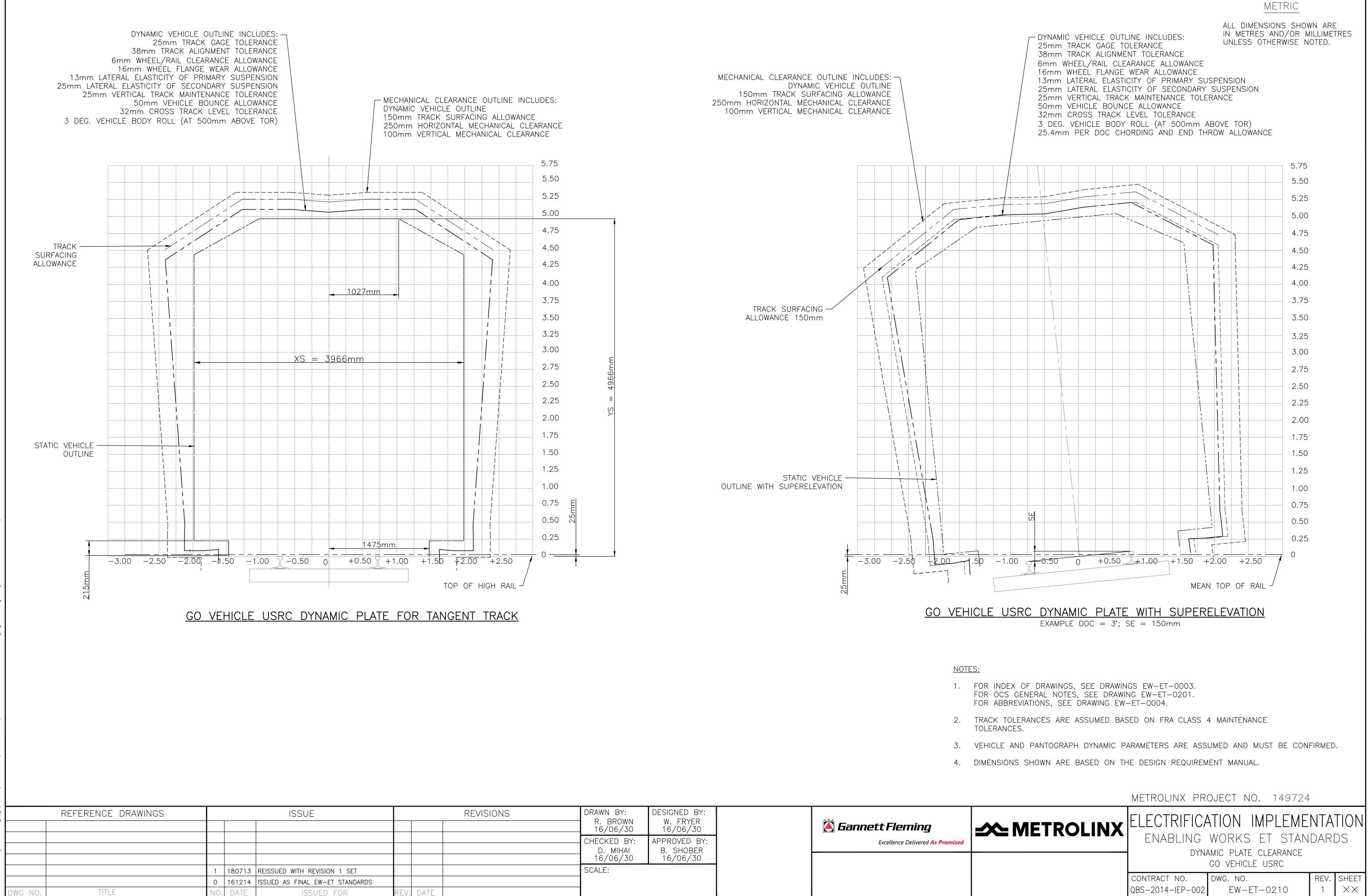
TOR X" UAL TE)	TOP OF FENCE RAIL FLEXIBLE BRAID CU GROUND JUMPER, BURNDY TYPE "80" OR APPROVED EQUAL (TYP)	S OTHERŴISE NOTED.
ANG CU RID CU RID CA CA CA CA CA CA CA CA CA CA	ADWELD	
RID - 3 CE) (TYP) NG GATE (SINGLE		
ALE		
ALE	MANUFACTURER & CAT. NO.	
ALE		
ALE 3MX20MM ground rod	MANUFACTURER & CAT. NO.	


QBS-2014-IEP-002 EW-ET-0122


1 XX

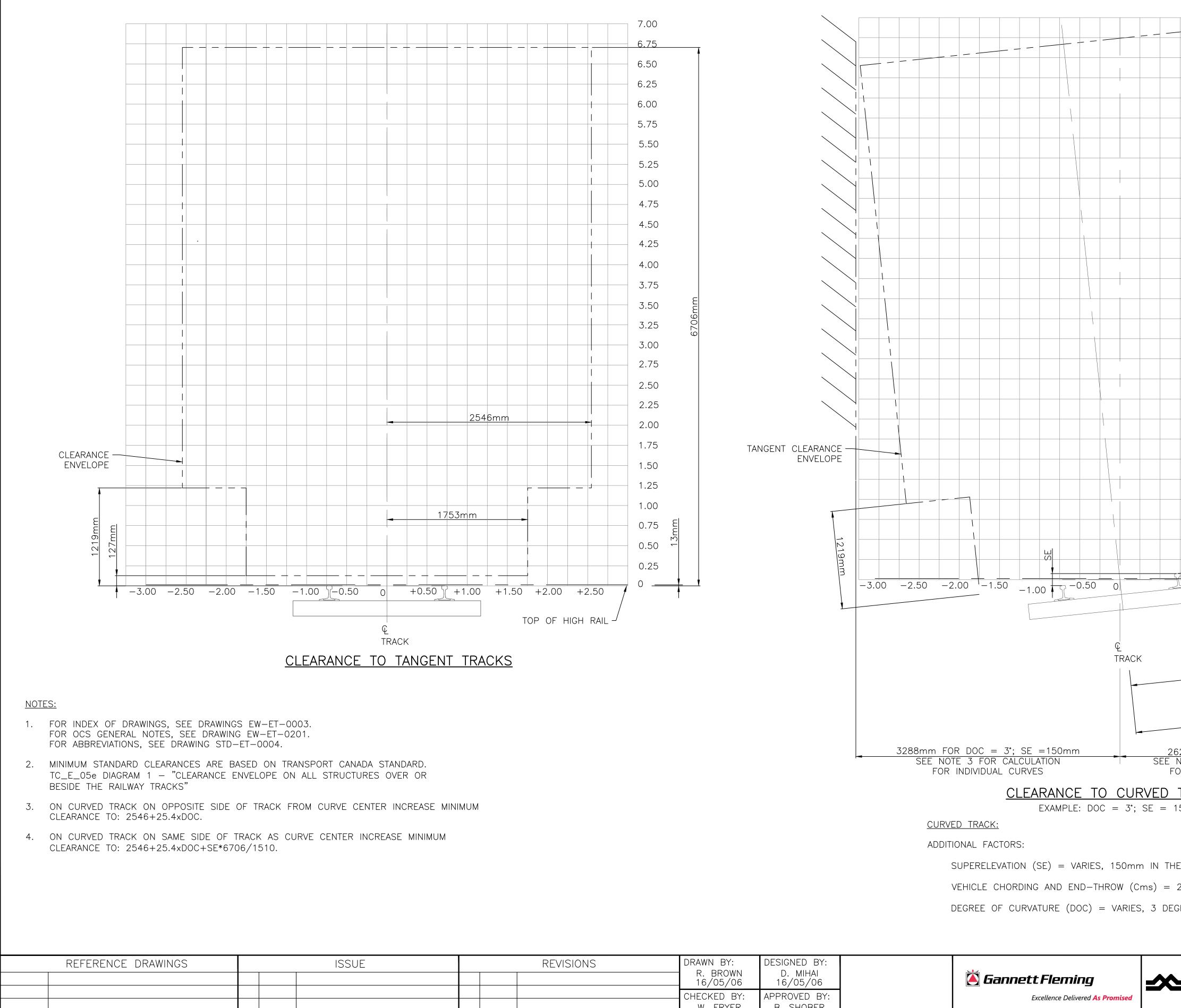
	CONNEC BY MAN 2. GROUND MANUFA	TED TO INTERUFACTURER.	RNAL GROU SHALL BE ECIFICATION	IST BE ELECTRI IND STUD OR (TERMINATED F N. PART NUMBE Y.	GROUND BAR PRE
FINISHED GRADE			<u>GROL</u>	JNDING C	ONNECTION TO PRE
MANUFACTURER & CAT. NO.	ITEM	Q	TY	<u>UNIT</u>	NC MATER
	1		1	EA	BOLT, HEX, SS, 1
(GENERIC)	2		1	EA	WASHER, SPRING (LOC
	3		2	EA	WASHER, FLA
BURNDY: YA28L-BOX OR EQUIVALENT	4		1	EA	TERMINAL 1
GENERIC	5	PER [DESIGN	FEET	27
E 1	(COUNTE MADE IN THE COI 2. GROUND MANUFA	ERPOISE) SYS N A CONVENIE NTRACTOR ON CONDUCTOR	STEM. THIS ENT LOCATI N SITE. SHALL BE ECIFICATION	TED TO THE GR CONNECTION W ION AS DETERM T TERMINATED F I. PART NUMBE Y.	VILL BE ASSISTANCE INTERCOM
JUNCTION BOX				NOTE STEEL B. NOTE 1	E 2 1 ASE #FO
DYNAMIC DISPLAY				<u>groundii</u>	NG CONNECTION TO
MANUFACTURER & CAT. NO.	ITEM		UNIT		NC <u>MATERIA</u>
BURNDY: BD12 OR EQUIVALENT	1	1	EA		FLEXIBLE
	2	2	EA		BOLT, HEX, SS, 3/8"-
(GENERIC)	3	2	EA		WASHER, SPRING (LOCK

REVISIONS	DRAWN BY:	DESIGNED BY:		
	T. SUYDAM 17/10/09	T. DOYLE 17/10/09	🎽 Gannett Fleming	
	CHECKED BY:	APPROVED BY:	Excellence Delivered As Promised	
	W. J. CARNEY 17/10/09	T. BANDY 17/10/09		
	SCALE:			



METROLINX PR	OJECT NO. 149724	-	
ENABLING et gr	ATION IMPLEME WORKS ET STAN rounding and bonding on details (sheet 6 of	DAR[
CONTRACT NO.	DWG. NO.	REV.	SHEET
QBS-2014-IEP-002	EW-ET-0124	1	$\times \times$

 FOR PROVISIONAL DOCS SUPPORT ALL PASSENGER STATUMES FOR COMPANIENT WITH FUTURE ELECTRETICATION. THE COS SUPPORT END CONTRACT SYSTEM WIRES AS WILL AS ANGULARY FEEDER AND STATU WIRES THROUGH THE STATUS. THE PROVISIONAL OCS SUPPORT ELEMENTS SHALL PROVIDE THE MEANS FOR THE FUTURE ELECTRETICATION CONTRACTOR TO SALVIN AND CONSISTENTLY CONSTRUCT THE FINL OCS STRUCTURES WITHOUT ANY MAJOR DEMOLTION OR MAJOR RETROTT REQUIRED. ADEQUATE REOVISIONAL OCS SUPPORTS SHALL BE DESCREDE AND INSTALLED THROUGH OUT THE STAT PLATFORM AREA TO PROVIDE CONNECTON POINTS FOR ALL ENTREE OCS STRUCTURES WITHIN THE N OR REPAREMENTED PLATFORMS. ALL PROVISIONAL OCS SUPPORTS DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCPLINE DESIGNS, INCLURING ONL ARCHTEOTINAL, ELECTRICAL AND ELECTRICAL, AND PLATMENT TRACTION POWER SUPPORT DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCPLINE DESIGNS, INCLUDING CONTACTION, MCASURES FOR ADJACENT SYSTEMS, AS WELL AS WICH IN THE VIENTY OF DIRECT CURRENT! PROVISIONS FOR TUTURE COS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBULD CONSIDERATIONS INCLUDENTS: PROVISIONS FOR TUTURE COS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBULD CONSIDERATIONS INCLUDENTS: PROVISIONS FOR TUTURE COS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBULD CONSIDERATIONS INCLUDENTS: PROVISIONS FOR TUTURE COS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBULD CONSIDERATIONS INCLUDENTS: PROVISIONS FOR TUTURE COS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBULD CONSIDERTIONS INCLUDENTS: PROVISIONS FOR TUTURE CONTRACTION TO THE CONTRACTORY TO ATTACH VIA SPLICE ON STATUS PORTONIC TO THE STATUS CONSIDERATIONS INCLUDENTS: PROVISIONS FOR TUTURE SALL BE DESIGNED WITH THE FUTURE OVERBULD EDSIGNED TO RESIST ALL FUTURE LOADS. WITH HECOS SUPPORT STRUCTURE SHALL BE DESIGNED AND THE TOTIONE CONTRACTOR TO A TACH VIA SPLICE TOR THE A MINIMUM CONTRACTION TO A TACH VIA SPLICE TOR THE A TACH VIA SPLICE TOR THE A TACH VIA SPLICE TOR THE AN	 ELECTRIFICATION. THE OCS SUPPORTS CONSISTS OF VARIOUS STRUCTURES SUCH AS PORTALS AND CANTILEVERS WHICH CARRY THE OVERHEAD CONTACT SYSTEM WIRES AS WELL AS ANCILLARY FEEDER AND STATIC WIRES THROUGH THE STATION. THE PROVISIONAL OCS SUPPORT ELEMENTS SHALL PROVIDE THE MEANS FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO EASILY AND CONSISTENTLY CONSTRUCT THE FINAL OCS STRUCTURE WITHOUT ANY MAJOR DEMOLITION OR MAJOR RETROFIT REQUIRED. ADEQUATE PROVISIONAL OCS SUPPORT SHALL BE DESIGNED AND INSTALLED THROUGHOUT THE STAT PLATFORM AREA TO PROVIDE CONNECTION POINTS FOR ALL FUTURE OCS STRUCTURES WITHIN THE N OR REHABILITATED PLATFORMS. ALL PROVISIONAL OCS SUPPORT DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCIPLINE DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. ACS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SHILLES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL I DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION CONTRACTOR TO ATTACH THE ACROSS—TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CLECTRIFICATION TO ATTACH THE ACROSS—TRACK DIRECTIO	1.	THESE DRAWINGS, IN ADDITION TO THE PERFORMANCE SPECIFICATION, PRESENTS THE REQUIREMENTS
 ELECTRIFICATION CONTRACTOR TO EASILY AND CONSISTENTLY CONSTRUCT THE FINAL OCS STRUCTURES WITHOUT ANY MAJOR DEMOLITION OR MAJOR RETROFIT REQUIRED. A ADEQUATE PROVISIONAL OCS SUPPORTS SHALL BE DESIGNED AND INSTALLED THROUGHOUT THE STATI PLATFORM AREA TO PROVIDE CONNECTION POINTS FOR ALL FUTURE OCS STRUCTURES WITHIN THE NI OR REHABILITATED PLATFORMS. ALL PROVISIONAL OCS SUPPORT DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCIPLINE DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. OCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL BE DESIGNED TO RESIST ALL FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AT A HEIGHT OF FOODM ABOVE THE	 ELECTRIFICATION CONTRACTOR TO EASILY AND CONSISTENTLY CONSTRUCT THE FINAL OCS STRUCTURE WITHOUT ANY MAJOR DEMOLITION OR MAJOR RETROFIT REQUIRED. A ADEQUATE PROVISIONAL OCS SUPPORTS SHALL BE DESIGNED AND INSTALLED THROUGHOUT THE STAT PLATFORM AREA TO PROVIDE CONNECTION POINTS FOR ALL FUTURE OCS STRUCTURES WITHIN THE N OR REHABILITATED PLATFORMS. ALL PROVISIONAL OCS SUPPORT DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCIPLINE DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. PCCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL IS DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE FUTURE ELECTRIFICATION CONTRACTOR A SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION OF THE SUPPORT STRUCTURE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE SUPLOTION AT THE ACROSS-TRACK DIRECTION AT THE HE		FOR PROVISIONAL OCS SUPPORT AT PASSENGER STATIONS FOR COORDINATION WITH FUTURE ELECTRIFICATION. THE OCS SUPPORTS CONSISTS OF VARIOUS STRUCTURES SUCH AS PORTALS AND CANTILEVERS WHICH CARRY THE OVERHEAD CONTACT SYSTEM WIRES AS WELL AS ANCILLARY FEEDER
 PLATFORM AREA TO PROVIDE CONNECTION POINTS FOR ALL FUTURE OCS STRUCTURES WITHIN THE NI OR REHABILITATED PLATFORMS. ALL PROVISIONAL OCS SUPPORT DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCIPLINE DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. OCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATIO DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION AT THE THE OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION AT THE TOP OF THE SUPPORTS	 PLATFORM AREA TO PROVIDE CONNECTION POINTS FOR ALL FUTURE OCS STRUCTURES WITHIN THE N OR REHABILITATED PLATFORMS. ALL PROVISIONAL OCS SUPPORT DESIGNS SHALL BE COORDINATED WITH THE VARIOUS DISCIPLINE DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. DCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL IN DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION OF THE SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STELL IN ADDITION TO THE EFFECT OF ROTATION AT THE ACROSS—TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STELL IN ADDITION TO THE EFFECT OF ROTATION AT THE OF FOUNDATION. THIS DEFLECTION OF THE STELL IN ADDITION TO THE EFFECT OF ROTATION AT THE OF FOUNDATION. THIS DEFLE	2.	ELECTRIFICATION CONTRACTOR TO EASILY AND CONSISTENTLY CONSTRUCT THE FINAL OCS STRUCTURES
 DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. 5. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. OCS STRUCTURAL REQUIREMENTS: 1. PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS. 2. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	 DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN TRACTION POWER SUPPLY AND DISTRIBUTION, COMMUNICATIONS, AND SIGNALING. ALL GROUNDING AND BONDING DESIGNS SHALL BE COORDINATED WITH ANY NEIGHBORING STRAY CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. DCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL IS DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION AT THE HEIGHT OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION AT THE HEIGHT OF THE SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION AT THE HEIGHT OF THE SUPPORT. 	3.	PLATFORM AREA TO PROVIDE CONNECTION POINTS FOR ALL FUTURE OCS STRUCTURES WITHIN THE NI
 CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. OCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL B DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATIO DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	 CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE VICINITY OF DIRECT CURRENT (DC) TRACTION POWER TRANSIT SYSTEMS. DCS STRUCTURAL REQUIREMENTS: PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL IN DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	4.	DESIGNS, INCLUDING CIVIL, ARCHITECTURAL, ELECTRICAL AND ELECTRONIC, MECHANICAL, AND PLUMBIN
 PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL B DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATIO DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE T OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	 PROVISIONS FOR FUTURE OCS SUPPORTS SHALL BE DESIGNED WITH THE FUTURE OVERBUILD CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL IN DESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	5.	CURRENT AND CORROSION CONTROL MEASURES FOR ADJACENT SYSTEMS, AS WELL AS WHEN IN THE
 CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL B DESIGNED TO RESIST ALL FUTURE LOADS. 2. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATIO 3. DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS—TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE TOP OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	 CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL IDESIGNED TO RESIST ALL FUTURE LOADS. INTEGRATED COLUMNS WHICH SUPPORT BOTH OCS AND CANOPY OR SHELTERS SHALL BE PROVIDED WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS—TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	<u>0C:</u>	S STRUCTURAL REQUIREMENTS:
 WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATIO 3. DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS—TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE T OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	 WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL HAVE A BOLT HOLE PATTERN CONSISTENT WITH THE DESIGN PROVIDED BY METROLINX ELECTRIFICATION. 3. DEFLECTION OF THE SUPPORT STRUCTURE SHALL BE KEPT AT A MINIMUM OF 75mm IN THE ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP 	1.	CONSIDERATIONS INCLUDED. THE INTENT OF THESE PROVISIONS IS TO ALLOW THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH VIA SPLICE OR STANDALONE DRILLED FOUNDATION TO COMPLETE THE OCS STRUCTURE. SPLICES AND FOUNDATIONS PROVIDED FOR THIS PURPOSE SHALL B
ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE T OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP	ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE OF FOUNDATION. THIS DEFLECTION WILL BE CALCULATED AT A HEIGHT OF 9600mm ABOVE THE TOP	2.	WITH PROVISIONS FOR A SPLICE FOR THE FUTURE ELECTRIFICATION CONTRACTOR TO ATTACH THE REMAINING OVERBUILD. THIS SPLICE SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS AND SHALL
HIGH RAIL.	HIGH RAIL.	3.	ACROSS-TRACK DIRECTION AT THE HEIGHT OF THE FUTURE CATENARY SUPPORTS. THIS SHALL BE CALCULATED AS THE DEFLECTION OF THE STEEL IN ADDITION TO THE EFFECT OF ROTATION AT THE T


ð									
g∖gfp		REFERENCE DRAWINGS			ISSUE				
rking									
owwo									
√: ℃									
T			1	180713	REISSUED WITH REVISION 1 SET				
RS			0	161214	ISSUED AS FINAL EW-ET STANDARDS				
GFT	DWG NO.	TITLE	NO.	DATE	ISSUED FOR	REV.	DATE		

				METROLINX PR	OJECT NO. 149724	F	
REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: W. FRYER 16/06/30	🞽 Gannett Fleming		ATION IMPLEME		
	CHECKED BY: D. MIHAI 16/06/30	APPROVED BY: B. SHOBER 16/06/30	Excellence Delivered As Promised	ENABLING	WORKS ET STAN	IDARI	JS
	SCALE:			CONTRACT NO. QBS-2014-IEP-002		REV. 1	SHEET XX

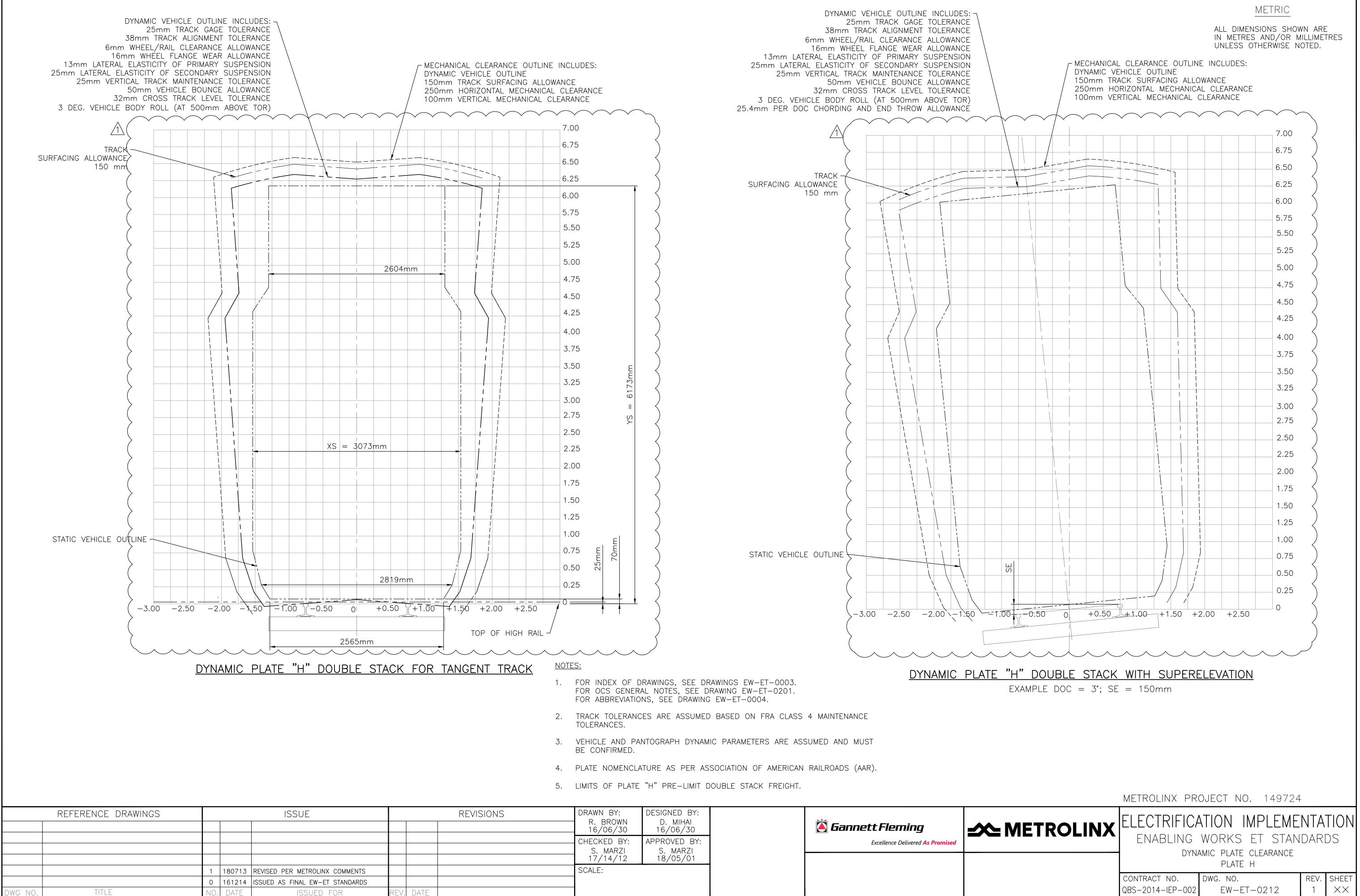
<u>NOT</u>	<u>ES:</u>
1.	FOR IN FOR OG FOR AE
2.	TRACK TOLERA

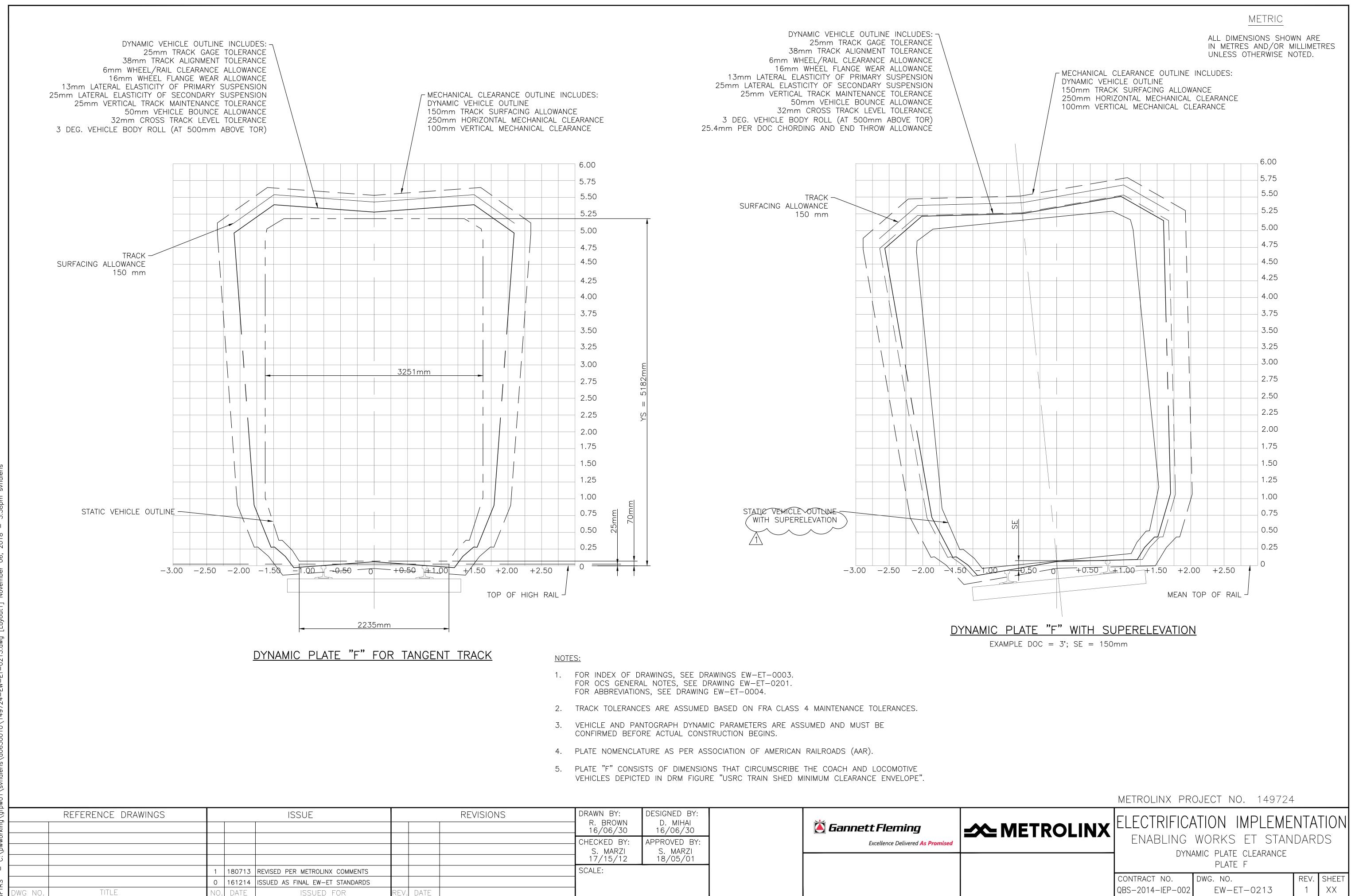
REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: W. FRYER 16/06/30	🎽 Gannett Fleming	_≫_
	CHECKED BY: D. MIHAI 16/06/30	APPROVED BY: B. SHOBER 16/06/30	Excellence Delivered As Promised	
	SCALE:			

1 180713 REISSUED WITH REVISION 1 SET

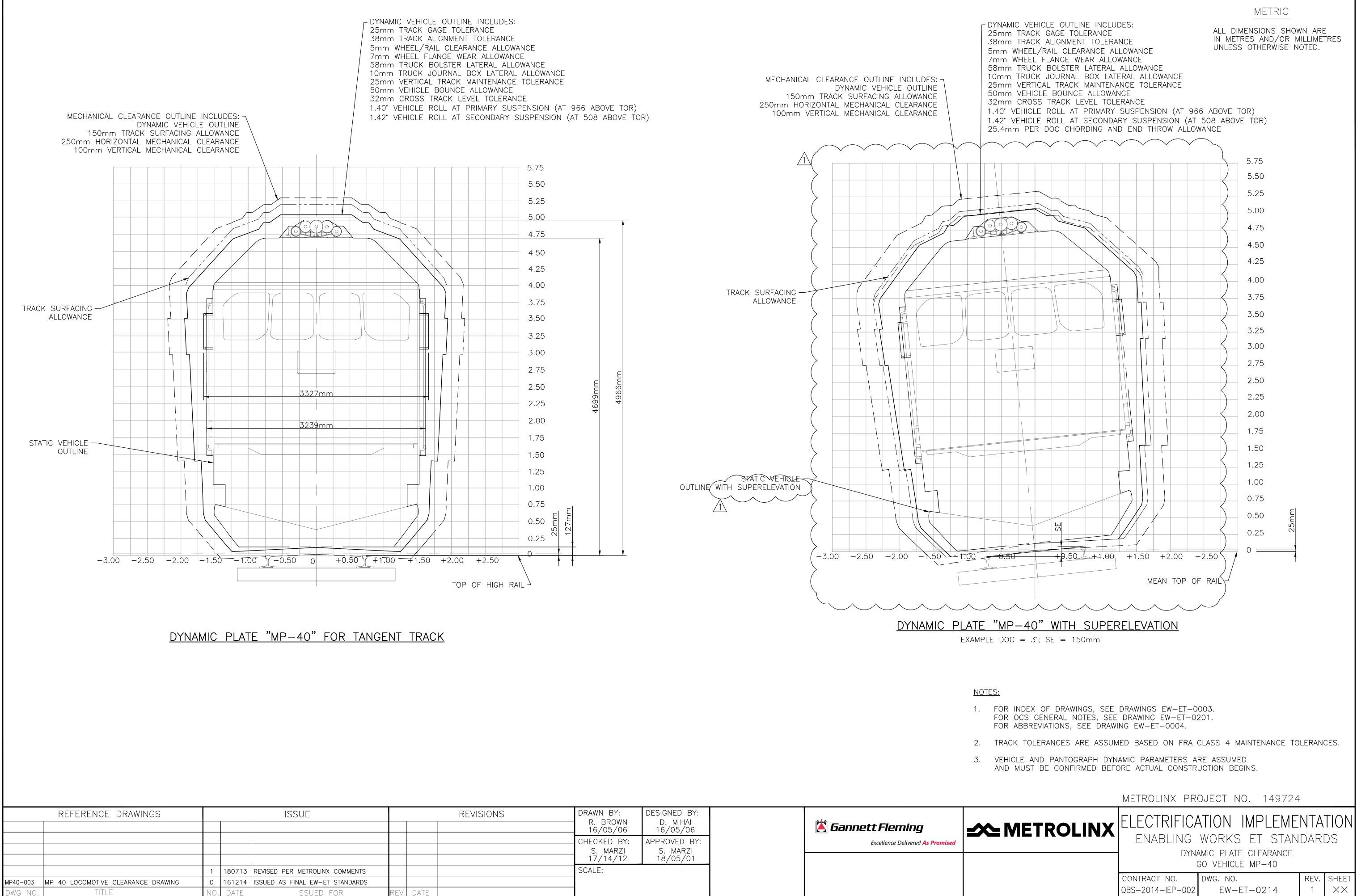
NO. DATE

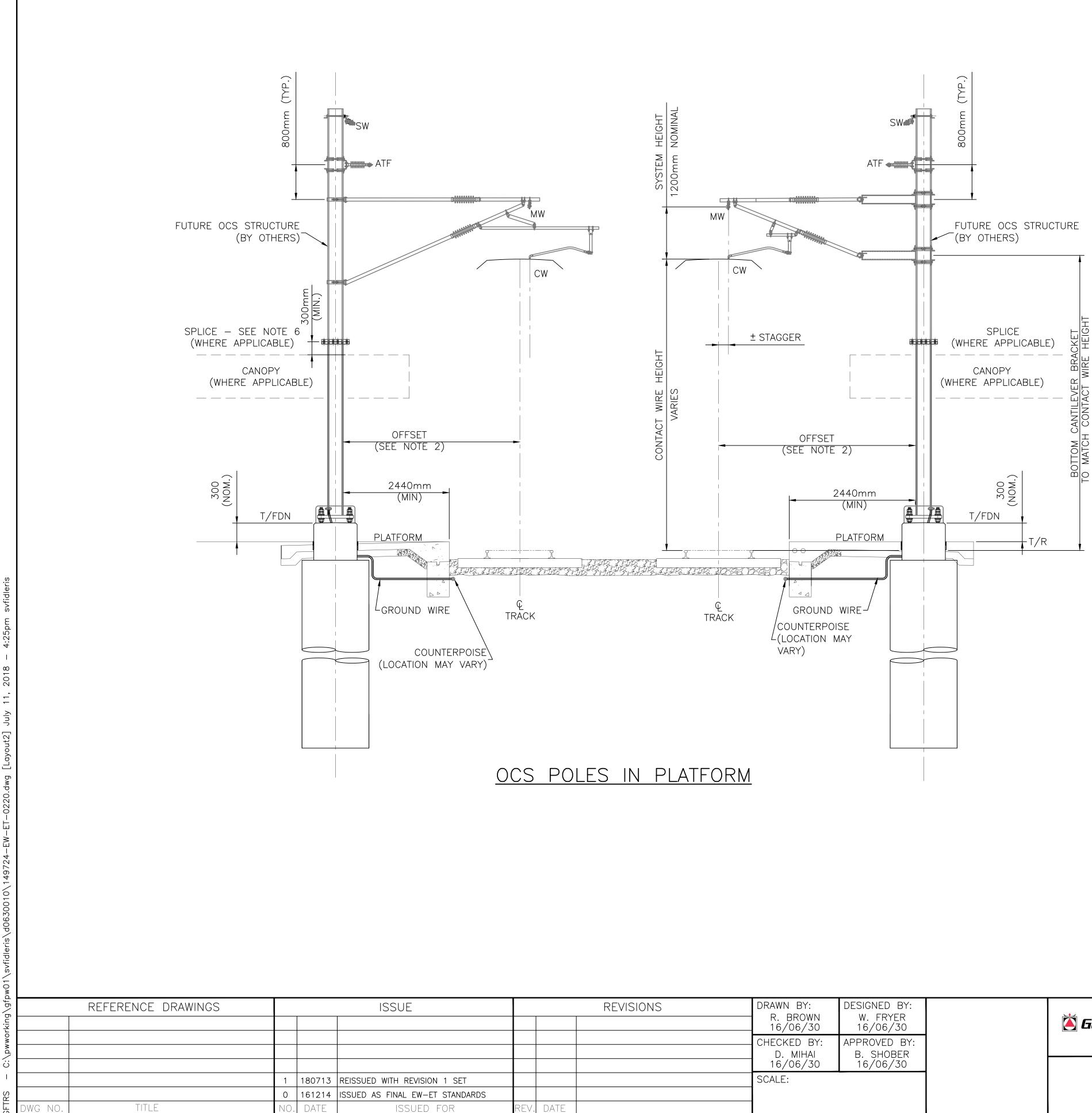
0 161214 ISSUED AS FINAL EW-ET STANDARDS


ISSUED FOR


REV. DATE

WG NO.


TITLE


Image: State of the state														
The second seco		7.00	\sim								f	7.00		
THE REFERENCE OF THE REPORT OF THE REFERENCE OF THE REFER		6.75										6.75	IN METRES AND/OR N	IILLIMETRES
		ł										6.50	UNLESS OTHERWISE N	OTED.
Image: State of the state												6.25		
												6.00		
Image: State of the state														
		5.75										/		
		5.50												
Image: State of the state		5.25												
		5.00												
Image: Sector		4.75										4.75		
		4.50										4.50		
		4.25										4.25		
		4 00	$\overline{\}$									4.00	670	
												3.75	06m	
		c										3.50		
		Q												
		3.25	$\overline{\}$											
		3.00												
		2.75												
		2.50												
		2.25	\sim											
		2.00										2.00		
Find and		1.75	TANGENT CLEARANCE									1.75		
1.23 1.23 1.25 1.25 0.23 0.24 0.25 0.25 0.25 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.25 0.25 0.25 1.25		1.50							12			1.50		
L03 July 6 July 7												1.25		
									В			1.00		
0.50 0.25			Ţ									0.75		
00 +2.50 -2.00 -2		0.75 III	-		1							0.50		
33 - 22.0 0 -3.00 -2.55 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -0.00 -2.55 -2.50 -2.50 -0.00 -2.55 -2.50 -2.55 -2.50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>лан сарана и сарана и Составата и сарана и с</td><td></td><td></td><td></td><td></td><td></td><td>0.25</td><td></td><td></td></td<>						лан сарана и сарана и Составата и сарана и с						0.25		
3389mm FOR DOC 27:55 180mm 255375	2.00 +2.50			-3.00 -2.50	-2.00 -1.50	-1.00 -0	.50 0	- +1.	.00 +1.5	50 +2.00 +2	2.60 🔪	、 、	OF RAIL	
3389mm FOR DOC 27:55 180mm 255375														
3288 mm TOR DOC = 2: SE = 169 mm 2829 cort 3288 mm TOR DOC = 2: SE = 169 mm 2829 cort 328 vort E 2 rok Recult/You volt Nubblack -OK NUBBLANCE Volt STOR CALCULATION -OK NUBBLANCE Volt Nubblack -OK NUBBLANCE Volt Nubblack -OK NUBBLANCE EXENTE -OK N	OF HIGH KAIL -													
3288 mm TOR DOC = 2: SE = 169 mm 2829 cort 3288 mm TOR DOC = 2: SE = 169 mm 2829 cort 328 vort E 2 rok Recult/You volt Nubblack -OK NUBBLANCE Volt STOR CALCULATION -OK NUBBLANCE Volt Nubblack -OK NUBBLANCE Volt Nubblack -OK NUBBLANCE EXENTE -OK N							Ę TDAO	,						
2284mm FOR DOC = 3: SE - Somm 2820m FOR DOC = 3: SHE NOTE 3 FOR CALCULATION FOR NOMDUL CORVES SE MOTE 3 FOR CALCULATION FOR NOMDUL CORVES CLARANCE TO CURVED TRACKS EXAMPLE: DOC = 3: SE = 150mm WHERE: DOC = DEGREE OF CURVE SE = SUPERCLEVATION SE = SUPERCLEVATION VEHICLE CHORDING AND END-TH-ROW (Cma) = 23.4mm FER DEGREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARES, 150mm IN THE EXAMPLE SHOWN WHERE: DOC = DEGREE OF CURVE SE = SUPERCLEVATION SE = SUPERCLEVATION EXISTENT DECREE OF CURVATURE (COC) = VARES, 150mm IN THE EXAMPLE SHOWN WHERE: DOC = DEGREE OF CURVE SE = SUPERCLEVATION EXISTENT DECREE OF CURVATURE (COC) = VARES, 3 DEGREES IN EXAMPLE SHOWN VETROLINX PROJECT NO, 49724 EXISTENT DEAMN EY: (6/05/CG DESCRED BY: (6/05/CG DESCRED BY: (6/05/CG WERE: SOULD DESCRED BY: (6/05/CG DESCRED BY: (6/05/CG DESCRED BY: (6/05/CG DESCRED BY: (CLEARANCE TO CURVATURE) EXISTENT DESCRED BY: (6/05/CG DESCRED BY: (6/05/CG DESCRED BY: (CLEARANCE TO CURVATURE) DESCRED BY: (CLEARANCE TO CLEARANCE TO CURVATURE) SOULD: SHOULD DESCRED BY: (CLEARANCE TO CURVATURE) DESCRED BY: (CLEARANCE TO CLEARANCE TO CLEARANCE DYNAMAC PLATE CLEARANCE TO CLEARANCE SOULD: SHOULD SHOULD DEDREE OF CURVATION DEDREE OF CLEARANCE TO CLEARANCE DYNAMAC PLATE CLEARANCE									3mm					
3288mm FOR DOC = 3'; SE = 130mm SEE NOTE 3: FOR CALCULATION FOR INDVIDUAL CURVES SEE NOTE 3: FOR CALCULATION FOR INDVIDUAL CURVES CLEARANCE TO CURVED TRACKS EXAMPLE: DOC = 3'; SE = 150mm CURVED TRACK: EXAMPLE: DOC = 3'; SE = 150mm CURVED TRACK: INDVIDUAL CURVES WHERE: DOC = 0 EPGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING METROLINX METROLINX METROLINX VEICLE CHORDING METROLINX VEICLE CHORDING METROLINX METROLINX VEICLE CHORDING METROLINX VEICLE CHORDING VEICLE CHORDING VEICLE CHORDING								1700						
3288mm FOR DOC = 3'; SE = 130mm SEE NOTE 3: FOR CALCULATION FOR INDVIDUAL CURVES SEE NOTE 3: FOR CALCULATION FOR INDVIDUAL CURVES CLEARANCE TO CURVED TRACKS EXAMPLE: DOC = 3'; SE = 150mm CURVED TRACK: EXAMPLE: DOC = 3'; SE = 150mm CURVED TRACK: INDVIDUAL CURVES WHERE: DOC = 0 EPGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DECREE OF CURVATURE DECREE OF CURVATURE (DOC) = VARIES, 3 DECREES IN EXAMPLE SHOWN VEICLE CHORDING METROLINX METROLINX METROLINX VEICLE CHORDING METROLINX VEICLE CHORDING METROLINX METROLINX VEICLE CHORDING METROLINX VEICLE CHORDING VEICLE CHORDING VEICLE CHORDING														
SEE VOTE 3 FOR CALCULATION TI SEE NOTE 2 FOR CALCULATION FOR INDVIDUAL CURVES CLEARANCE TO CURVED TRACKS EXAMPLE: DOC = 3; SE = 150mm EXAMPLE: DOC = 3; SE = 150mm CURVED TRACK: WHERE: ADDITIONAL FACTORS: DCC = DEGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN SE = SUPERELEVATION VEHICLE CHORDING AND END-THROW (Cme) = 25.4mm PER DEGREE OF CURVATURE DCC = DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 EV SIONS R. BROWN 16/05/06 16/05/06									<u>2546m</u>	1m				
SEE NOTE 3 FOR CALCULATION TO SEE NOTE 2 FOR CALCULATION FOR INDIVIDUAL CURVES CLEARANCE TO CURVED TRACKS CURVED TRACK: WHERE: ADDITIONAL FACTORS: DOC = 0 EGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN SE = SUPERELEVATION VEHICLE CHORDING AND END-THROW (Cme) = 25.4mm PER DEGREE OF CURVATURE DOC = DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX METROLINX PROJECT NO. 149724 METROLINX FACTORS: DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 EV SIONS DRAWN BY: D. MHAI 16/05/06 METROLINX ELECTRIFICATION IMPLEMENTATION METROLINX B. SHOWR ELECTRIFICATION IMPLEMENTATION METROL				3288m		°· SE −150mm				NO7°				
CLEARANCE TO CURVED TRACKS EXAMPLE: DOC = 3; SE = 150mm WHERE: OURVED TRACK: MURCE: ADDITIONAL FACTORS: DOC = DEGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX METROLINX PROJECT NO. 149/24 EVENTION DESIGNED BY: 0. 0. CONTRACT NO. DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX METROLINX </td <td></td> <td></td> <td></td> <td>SEE</td> <td>E NOTE 3 FOR C</td> <td>ALCULATION</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				SEE	E NOTE 3 FOR C	ALCULATION								
EXAMPLE: D0C = 3'; SE = 150mm WHERE: CURVED_TRACK: WHERE: ADDITIONAL FACTORS: D0C = DEGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN SE = SUPERELEVATION VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE D0C = DEGREE OF CURVE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 VENISIONS DRAWN BY: DESIGNED BY: P. BROWN D. MIHAI 16/05/06 16/05/06 VENISIONS DESIGNED BY: SCALE: DESIGNED BY:										CURVES				
CURVED TRACK: WHERE: ADDITIONAL FACTORS: DCC = DEGREE OF CURVE SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN SE = SUPERELEVATION VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DCC = DEGREE OF CURVE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 EVISIONS PRAWN BY: DESIGNED BY: 16/05/06 16/05/06 W. FRYYER SHORDER VEHECKE DBY: APPROVED BY: SCALE: SHORDER					<u>(</u>									
ADDITIONAL FACTORS: WHERE: DOC = DEGREE OF CURVE SE = SUPERELEVATION SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN SE = SUPERELEVATION VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN VENICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN VENICLE CHORDING DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 VENICIENTS DRAWN BY: 16/05/06 DESIGNED BY: 0.MIHANI 16/05/06 DESIGNED BY: 0.MIHANI 16/05				(CURVED TRACK:		000 - 0,	3L - 130111	11					
DDC = DEGREE OF CURVE SE = SUPERELEVATION (SE) = VARIES, 150mm IN THE EXAMPLE SHOWN DDC = DEGREE OF CURVE SE = SUPERELEVATION VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 VEVISIONS DRAWN BY: 16/05/06 DESIGNED BY: D. MIHAI 16/05/06 DESIGN						RS:							WHERE:	
VEHICLE CHORDING AND END-THROW (Cms) = 25.4mm PER DEGREE OF CURVATURE DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 METROLINX PROJECT NO.				,										
DEGREE OF CURVATURE (DOC) = VARIES, 3 DEGREES IN EXAMPLE SHOWN METROLINX PROJECT NO. 149724 METROLINX PROJECT NO. 149724 Excellence Delivered As Promised CHECKED BY: W. FRYER 16/05/06 SCALE: DESIGNED BY: B. SHOBER 16/05/06 SCALE: DESIGNED BY: B. SHOBER 16/05/06 SCALE: DESIGNED BY: B. SHOBER 16/05/06 SCALE: DESIGNED BY: B. SHOBER 16/05/06 METROLINX PROJECT NO. 149724 METROLINX PROJECT NO. 149724 CONTRACT NO. 16/05/06 DYNAMIC PLATE CLEARANCE TC_E_05e DIAGRAM 1 CONTRACT NO. DWG. NO. REV. SHEET											N / A -			
DRAWN BY: DESIGNED BY: DESIGNED BY: D. MIHAI 16/05/06 D. MIHAI D. MIHAI D. MIHAI 16/05/06 D. MIHAI					VEHICLE CHO	ORDING AND EN	D-THROW ((Cms) = 25.4m	nm PER [DEGREE OF CUR	RVATURE			
DRAWN BY: DESIGNED BY: DESIGNED BY: D. MIHAI 16/05/06 16/05/06 16/05/06 CHECKED BY: APPROVED BY: Excellence Delivered As Promised W. FRYER B. SHOBER 16/05/06 16/05/06 SCALE: SCALE:					DEGREE OF	CURVATURE (DC	C) = VARIE	S, 3 DEGREES	S IN EXAM	PLE SHOWN				
DRAWN BY: DESIGNED BY: DESIGNED BY: D. MIHAI 16/05/06 16/05/06 16/05/06 Excellence Delivered As Promised CHECKED BY: APPROVED BY: Excellence Delivered As Promised Excellence Delivered As Promised Excellence Delivered As Promised ENABLING WORKS ET STANDARDS SCALE: SCALE: SCALE: REV. REV. REV. SHEET														
W. FRYER B. SHOBER 16/05/06 16/05/06 SCALE: CONTRACT NO. DWG. NO. REV.								1						
W. FRYER B. SHOBER 16/05/06 16/05/06 SCALE: CONTRACT NO. DWG. NO. REV.	KEVISIONS				🚺 🕞 n	nett Flomi	זרי				ELE	CTRIFIC/	ATION IMPLEME	NTATION
W. FRYER B. SHOBER 16/05/06 16/05/06 SCALE: CONTRACT NO. DWG. NO. REV. SHEET							• J red As Promised					NABLING	WORKS ET STAN	DARDS
SCALE: CONTRACT NO. DWG. NO. REV. SHEET		W.				LAUGUEIILE DEUVE					-	DYN	AMIC PLATE CLEARANCE	_
													•	
]												

REVISIONS	DRAWN BY:	DESIGNED BY:		
	R. BROWN 16/06/30	D. MIHAI 16/06/30	🎽 Gannett Fleming	<u>-</u>
	CHECKED BY:	APPROVED BY:	Excellence Delivered As Promised	
	S. MARZI	S. MARZI		
	17/15/12	18/05/01		
	SCALE:			

🎽 Gannett Fleming Excellence Delivered As Promised

4. SIGN OF STAGGER DESIGNATES WHICH SIDE OF TRACK CENTER LINE THE CONTACT WIRE IS ON RELATIVE TO OCS CANTILEVER BASE. DIRECTION ARROW OF STAGGER DESIGNATES DIRECTION OF STEADY ARM PULL. 5. FOR OCS STRUCTURES GROUNDING AND BONDING IN STATION AREAS, SEE EW-ET-0100

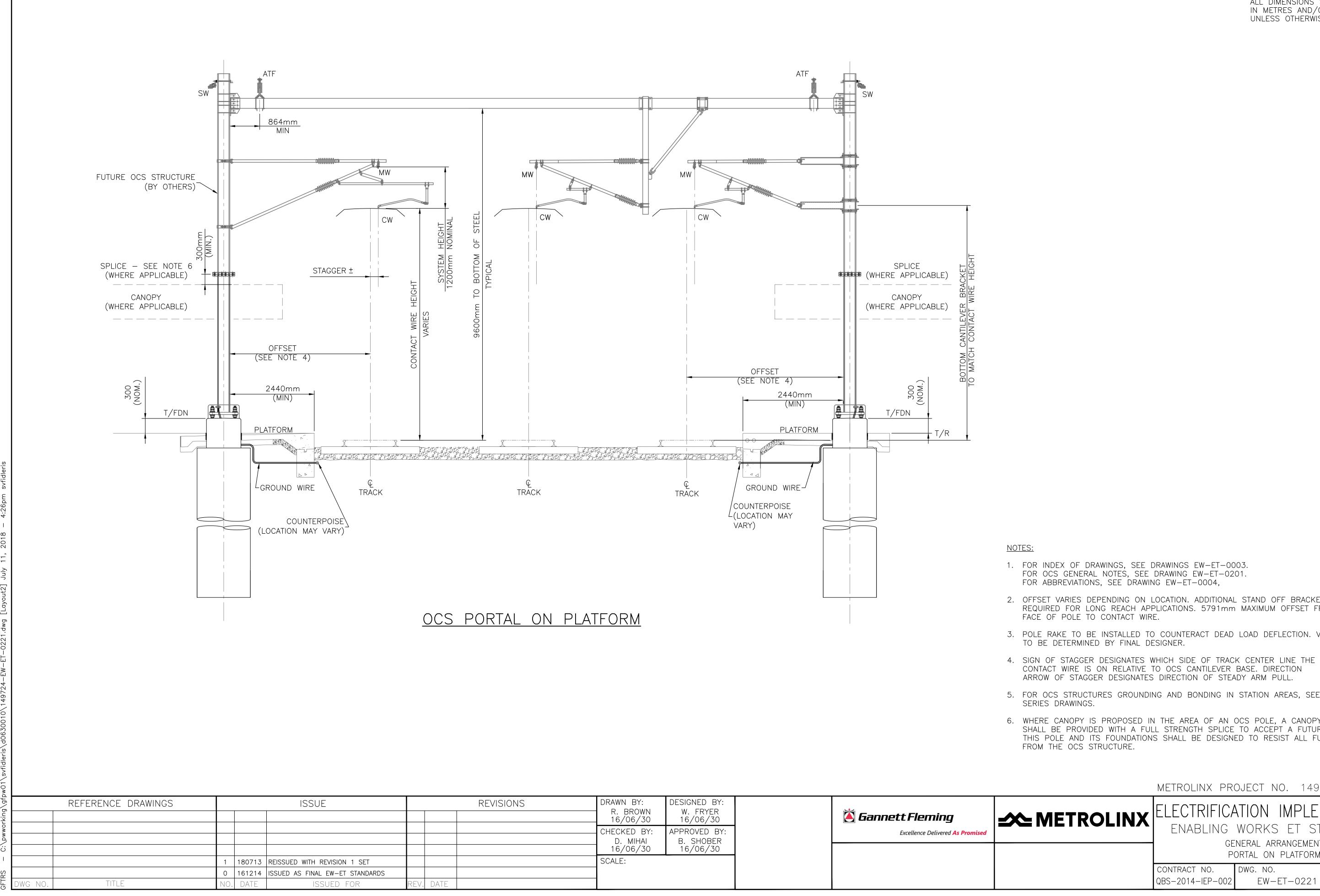
	METROLINX PR	OJECT NO.	149724	-	
METROLINX	ENABLING Ge		T STAN Gement		
	CONTRACT NO. QBS-2014-IEP-002	DWG. NO. EW-ET-(0220	REV. 1	SHEET XX

FROM THE OCS STRUCTURE.

6. WHERE CANOPY IS PROPOSED IN THE AREA OF AN OCS POLE, A CANOPY SUPPORT POLE SHALL BE PROVIDED WITH A FULL STRENGTH SPLICE TO ACCEPT A FUTURE OCS POLE.

THIS POLE AND ITS FOUNDATIONS SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS

SERIES DRAWINGS.


3. POLE RAKE TO BE INSTALLED TO COUNTERACT DEAD LOAD DEFLECTION. VALUES TO BE DETERMINED BY FINAL DESIGNER.

REQUIRED FOR LONG REACH APPLICATIONS. 5791mm MAXIMUM OFFSET FROM FACE OF POLE TO CONTACT WIRE.

2. OFFSET VARIES DEPENDING ON LOCATION. ADDITIONAL STAND OFF BRACKET

1. FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201. FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004,

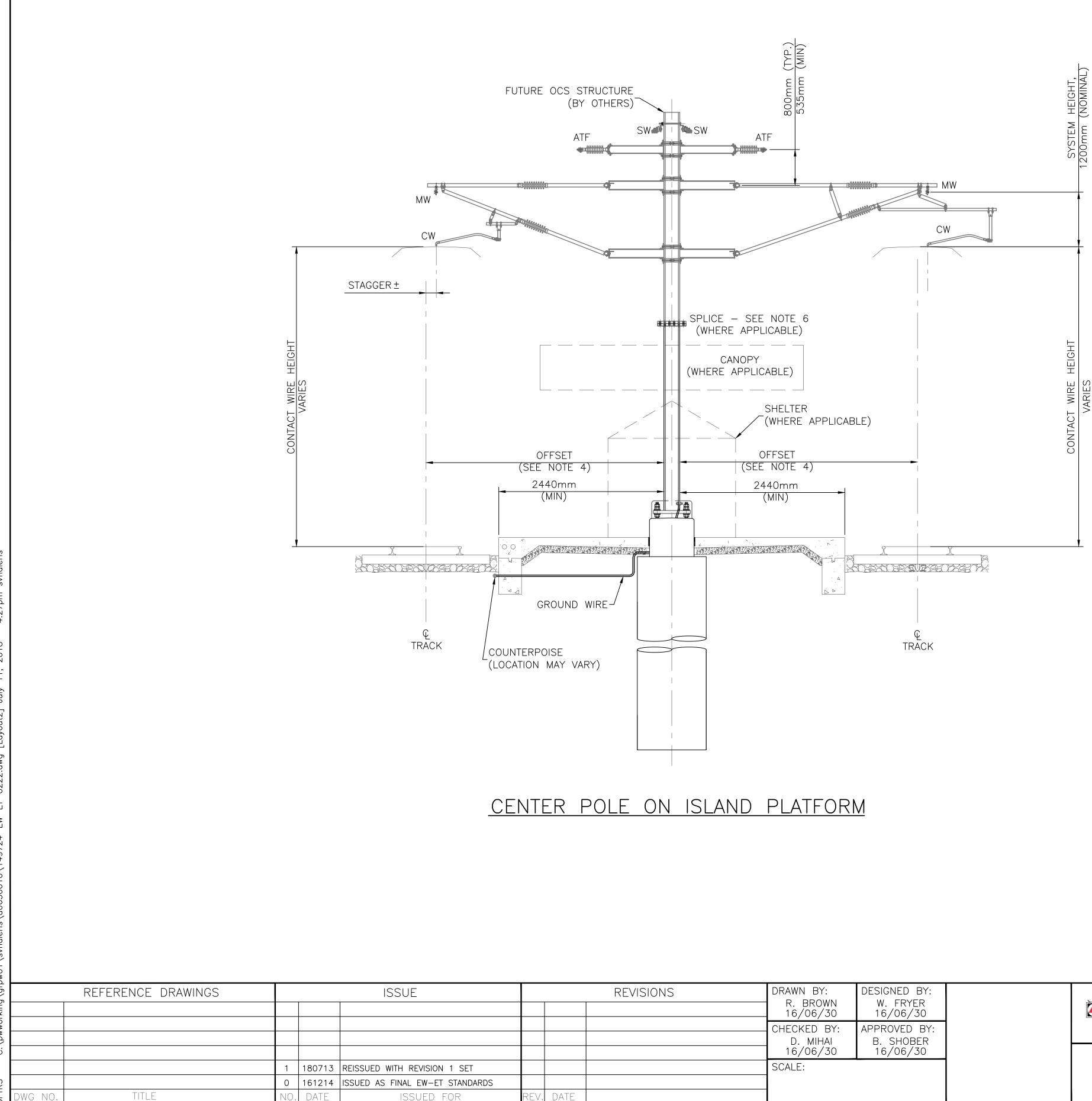
<u>NOTES:</u>

				METROLINX PR	OJECT NO. 149724	1	
REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: W. FRYER 16/06/30	🎽 Gannett Fleming	ELECTRIFIC	ATION IMPLEME		TION
	CHECKED BY: D. MIHAI 16/06/30	APPROVED BY: B. SHOBER 16/06/30	Excellence Delivered As Promised	GE	WORKS ET STAN Eneral arrangement Ortal on platform	IDARL	JS
	SCALE:				DWG. NO.	REV. 1	SHEET XX

6. WHERE CANOPY IS PROPOSED IN THE AREA OF AN OCS POLE, A CANOPY SUPPORT POLE SHALL BE PROVIDED WITH A FULL STRENGTH SPLICE TO ACCEPT A FUTURE OCS POLE. THIS POLE AND ITS FOUNDATIONS SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS FROM THE OCS STRUCTURE.

SERIES DRAWINGS.

CONTACT WIRE IS ON RELATIVE TO OCS CANTILEVER BASE. DIRECTION ARROW OF STAGGER DESIGNATES DIRECTION OF STEADY ARM PULL. 5. FOR OCS STRUCTURES GROUNDING AND BONDING IN STATION AREAS, SEE EW-ET-0100

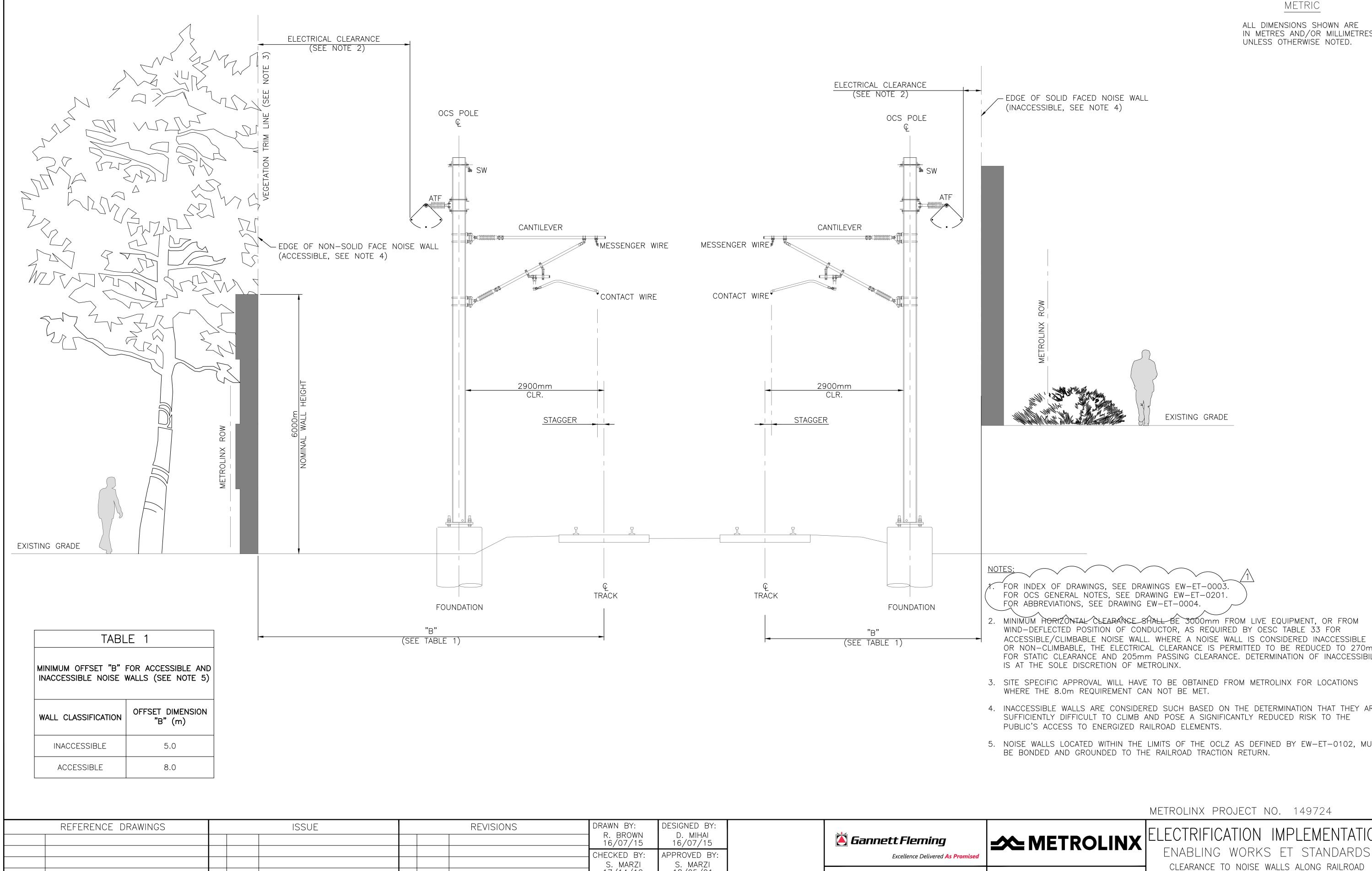

3. POLE RAKE TO BE INSTALLED TO COUNTERACT DEAD LOAD DEFLECTION. VALUES TO BE DETERMINED BY FINAL DESIGNER.

FACE OF POLE TO CONTACT WIRE.

2. OFFSET VARIES DEPENDING ON LOCATION. ADDITIONAL STAND OFF BRACKET REQUIRED FOR LONG REACH APPLICATIONS. 5791mm MAXIMUM OFFSET FROM

FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004,

1. FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201.


S — C:\pwworking\gfpw01\svfidleris\d0630010\149724-EW-ET-0222.dwg [Layout2] July 11, 2018 — 4:27pm

				METROLINX PR	OJECT NO. 149724	4	
REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: W. FRYER 16/06/30	🎽 Gannett Fleming	ELECTRIFIC	ATION IMPLEME	INTA	TION
	CHECKED BY: D. MIHAI 16/06/30	APPROVED BY: B. SHOBER 16/06/30	Excellence Delivered As Promised	GE	WORKS ET STAN Eneral arrangement pole on island plate		DS
	SCALE:			CONTRACT NO. QBS-2014-IEP-002	DWG. NO.	-	SHEET XX

<u>NOTES:</u>

FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004,
OFFSET VARIES DEPENDING ON LOCATION. ADDITIONAL STAND OFF BRACKET REQUIRED FOR LONG REACH APPLICATIONS. 5791mm MAXIMUM OFFSET FROM FACE OF POLE TO CONTACT WIRE.
POLE RAKE TO BE INSTALLED TO COUNTERACT DEAD LOAD DEFLECTION. VALUES TO BE DETERMINED BY FINAL DESIGNER.
SIGN OF STAGGER DESIGNATES WHICH SIDE OF TRACK CENTER LINE THE CONTACT WIRE IS ON RELATIVE TO OCS CANTILEVER BASE. DIRECTION ARROW OF STAGGER DESIGNATES DIRECTION OF STEADY ARM PULL.
FOR OCS STRUCTURES GROUNDING AND BONDING IN STATION AREAS, SEE EW-ET-0100 SERIES DRAWINGS.
WHERE CANOPY IS PROPOSED IN THE AREA OF AN OCS POLE, A CANOPY SUPPORT POLE SHALL BE PROVIDED WITH A FULL STRENGTH SPLICE TO ACCEPT A FUTURE OCS POLE. THIS POLE AND ITS FOUNDATIONS SHALL BE DESIGNED TO RESIST ALL FUTURE LOADS FROM THE OCS STRUCTURE.

1. FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201.

NG NO.

180713 REISSUED WITH REVISION 1 SET

0 161214 ISSUED AS FINAL EW-ET STANDARDS

ISSUED FOR

REV. DATE

1

DATE

TITLE

REVISIONS	DRAWN BY: R. BROWN 16/07/15	DESIGNED BY: D. MIHAI 16/07/15	🎽 Gannett Fleming	
	CHECKED BY: S. MARZI	APPROVED BY: S. MARZI	Excellence Delivered As Promised	
	17/14/12 SCALE:	18/05/01		

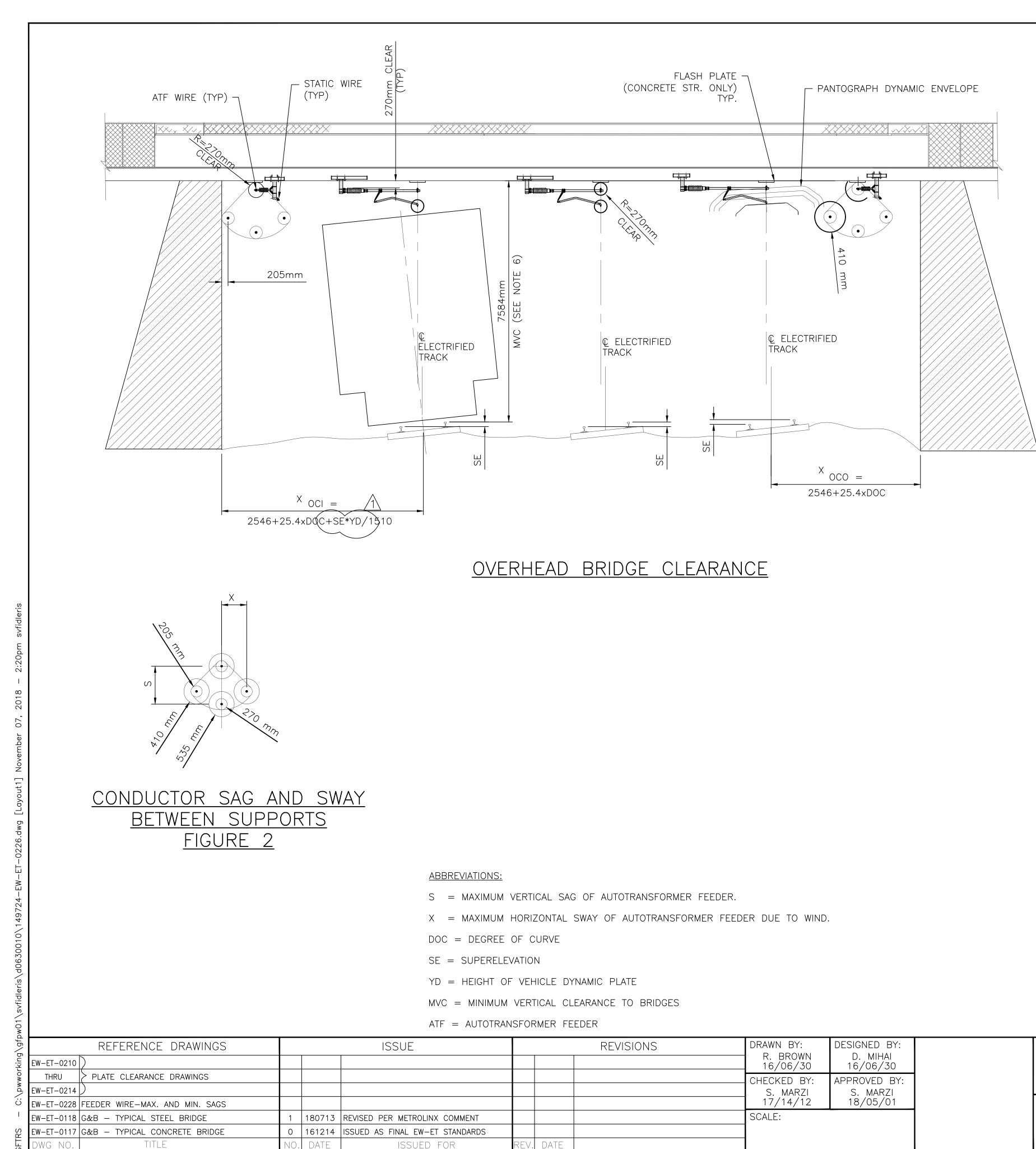
METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

EXISTING GRADE

2. MINIMUM HORIZONTAL CLEARANCE SHALL BE 3000mm FROM LIVE EQUIPMENT, OR FROM WIND-DEFLECTED POSITION OF CONDUCTOR, AS REQUIRED BY OESC TABLE 33 FOR ACCESSIBLE/CLIMBABLE NOISE WALL. WHERE A NOISE WALL IS CONSIDERED INACCESSIBLE OR NON-CLIMBABLE, THE ELECTRICAL CLEARANCE IS PERMITTED TO BE REDUCED TO 270mm FOR STATIC CLEARANCE AND 205mm PASSING CLEARANCE. DETERMINATION OF INACCESSIBILITY

3. SITE SPECIFIC APPROVAL WILL HAVE TO BE OBTAINED FROM METROLINX FOR LOCATIONS


4. INACCESSIBLE WALLS ARE CONSIDERED SUCH BASED ON THE DETERMINATION THAT THEY ARE SUFFICIENTLY DIFFICULT TO CLIMB AND POSE A SIGNIFICANTLY REDUCED RISK TO THE

5. NOISE WALLS LOCATED WITHIN THE LIMITS OF THE OCLZ AS DEFINED BY EW-ET-0102, MUST BE BONDED AND GROUNDED TO THE RAILROAD TRACTION RETURN.

METRULINX PROJECT NO. 149724	
ELECTRIFICATION IMPLEMENT	AT

CONTRACT NO. DWG. NO. REV. SHEE	ΞT
QBS-2014-IEP-002 EW-ET-0225 1 XX	<

101

<u>NOTE</u>	<u>s</u>	~ /	\frown	
1.	FOR	OCS	GENE	DRAWI RAL N IONS,
2.	VEHI	CLE T	O GR	

STATIC ELECTRIC OCS TOLERANCI OCS DEPTH PASSING ELECT DYNAMIC VEHICI TRACK MAINTEN TRACK RAISE FLASH PLATE T SUPERELEVATIO

- CLEARANCE TO CONDUCTORS IN SPAN.
- VERTICAL CLEARANCE MAY BE REDUCED.

MAXIMUM HEIGHT PLATE TYPE PERMITTED	MAXIMUM STATIC PLATE HEIGHT	MAXIMUM STATIC PLATE WIDTH
USRC GO VEHICLE	4966	3966
MP40 LOCOMOTIVE	4966	3327
AAR PLATE "F"	5182	3251
AAR PLATE "H"	6173	3073

REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: D. MIHAI 16/06/30	🎽 Gannett Fleming	
	CHECKED BY: S. MARZI	APPROVED BY: S. MARZI	Excellence Delivered As Promised	
	17/14/12 SCALE:	18/05/01		

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

/INGS, SEE DRAWINGS EW-ET-0003. NOTES, SEE DRAWING EW-ET-0201. SEE DRAWING EW-ET-0004.

CE FROM ENERGIZED PARTS OF THE OCS OR DED STRUCTURES SHALL BE AS RECOMMENDED BY AREMA CHAPTER 33, TABLE 33-2-2, WHICH REQUIRES A NORMAL MINIMUM STATIC CLEARANCE OF 270mm FOR 25KV AC. FOR CONCRETE STRUCTURES ONLY, A FLASH PLATE SHALL BE PROVIDED ABOVE LIVE PARTS WHEN THE SEPARATION OF THE OCS TO THE BOTTOM OF BRIDGE IS LESS THAN 0.914m.

3. NORMAL MINIMUM STATIC CLEARANCE BETWEEN 25 KV AUTOTRANSFORMER FEEDER (ATF) AND ENERGIZED CATENARY OR PANTOGRAPH SHALL BE 535mm AS REQUIRED BY AREMA CHAPTER 33, TABLE 33-2-2.

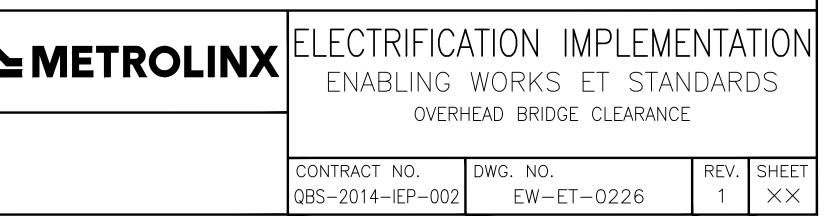
4. THE MINIMUM HORIZONTAL CLEARANCE TO BRIDGE STRUCTURE SHALL BE XOCO OR XOCI. MORE CLEARANCE MAY BE REQUIRED TO FIT AUTOTRANSFORMER FEEDER WIRES.

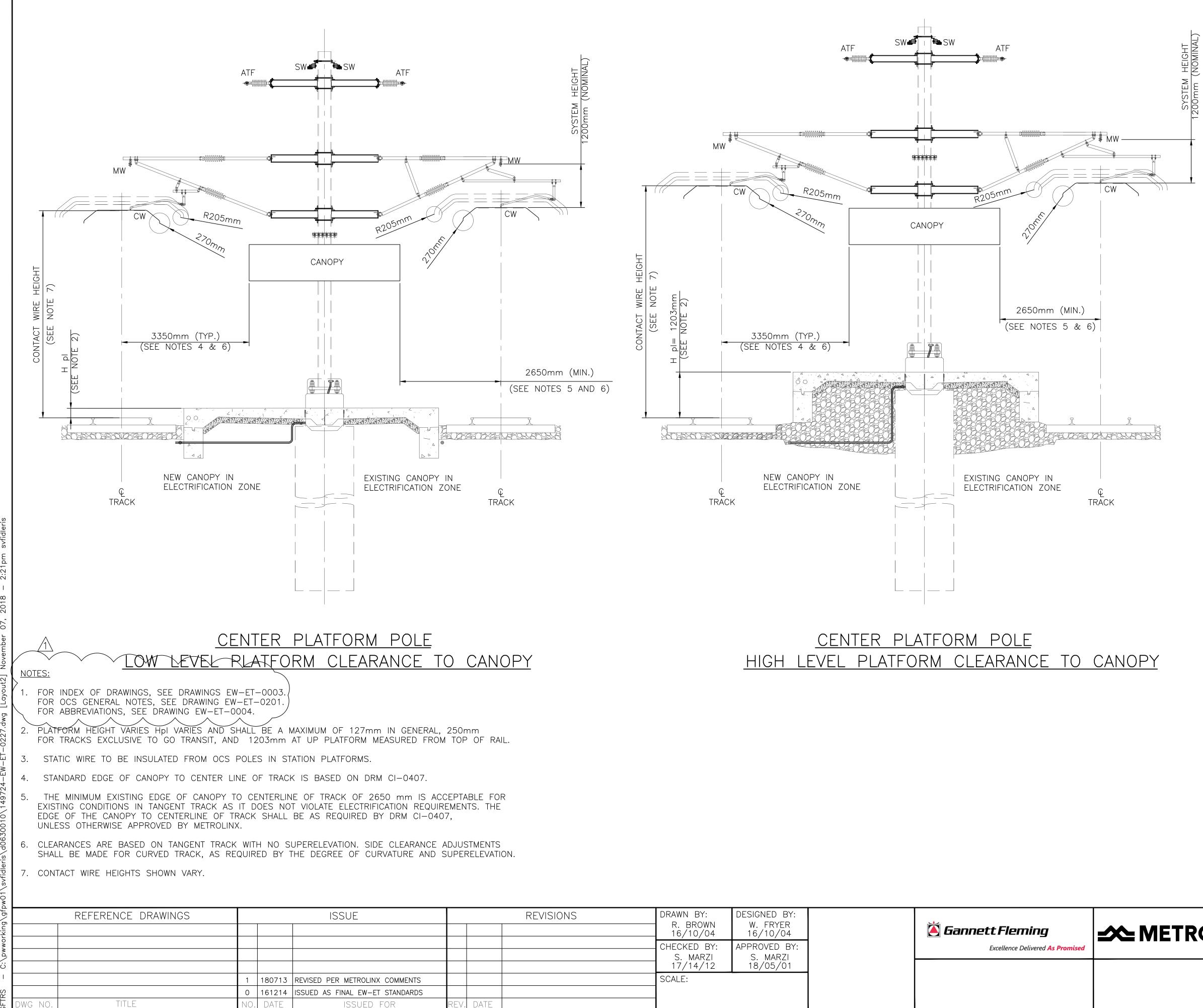
5. THE NORMAL CLEARANCE FOR OVERHEAD BRIDGES (TOP OF RAIL ELEVATION TO BOTTOM OF BRIDGE ELEVATION) - SHALL BE CALCULATED AS REQUIRED BY AREMA CHAPTER 33, FIGURE 33-2-3.

6. FOR THE GO STANDARD DOUBLE STACK FREIGHT VEHICLE, THE MINIMUM NORMAL CLEARANCE MVC = 7584mm. THE FOLLOWING PARAMETERS WERE USED TO CALCULATE THE MINIMUM NORMAL CLEARANCE: THE PARAMETER REQUIRED AT SPECIFIC BRIDGE MAY VARY.

CAL CLEARANCE	270mm
E	25mm
	160mm
RICAL CLEARANCE	205mm
le load (yd)	6706mm
VANCE TOLERÁNCE	25mm
	155mm
HICKNESS	12.7mm
Ν	0.0mm

VEHICLE BOUNCE IS ASSUMED TO BE INCLUDED IN THE DYNAMIC PLATE.


7. MAXIMUM SAG AND BLOW OFF MUST BE CONSIDERED, WHEN DETERMING


8. WHERE LOCAL CONDITIONS WARRANT AND RAIL TRAFFIC IS LIMITED TO PLATES OF LESS HEIGHT, THE DIMENSIONS SHOWN ON THIS DRAWING MAY BE MODIFIED WITH THE APPROVAL OF METROLINX.

9. FOR ATF WIRE MAXIMUM AND MINIMUM SAGS, SEE DRAWING EW-ET-0228.

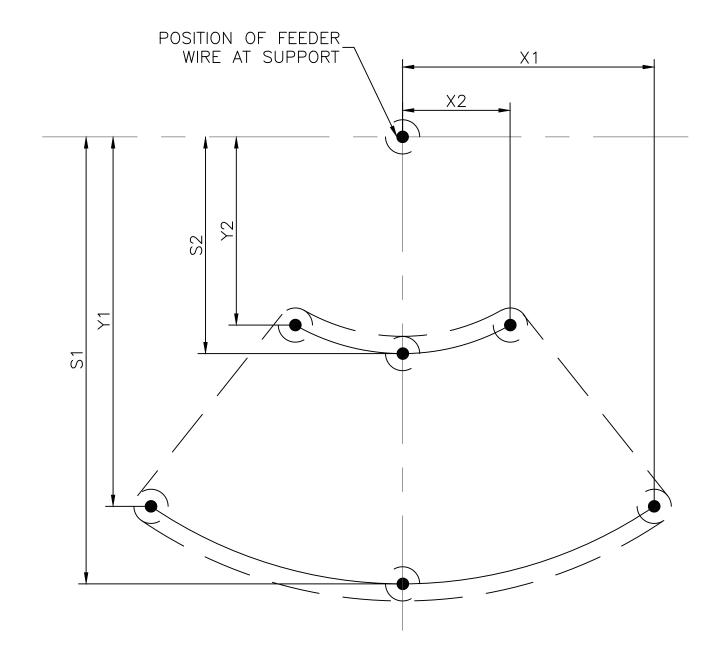
10. SITE SPECIFIC EVALUATIONS SHALL BE PERFORMED FOR EACH BRIDGE LOCATION. ANY OVERHEAD BRIDGE TO BE COORDINATED WITH METROLINX ELECTRIFICATION

METROLINX PROJECT NO. 149724

EVISIONS	DRAWN BY:	DESIGNED BY:		
	R. BROWN 16/10/04	W. FRYER 16/10/04	🎽 Gannett Fleming	
	CHECKED BY:	APPROVED BY:	Excellence Delivered As Promised	
	S. MARZI 17/14/12	S. MARZI 18/05/01		
	SCALE:			

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

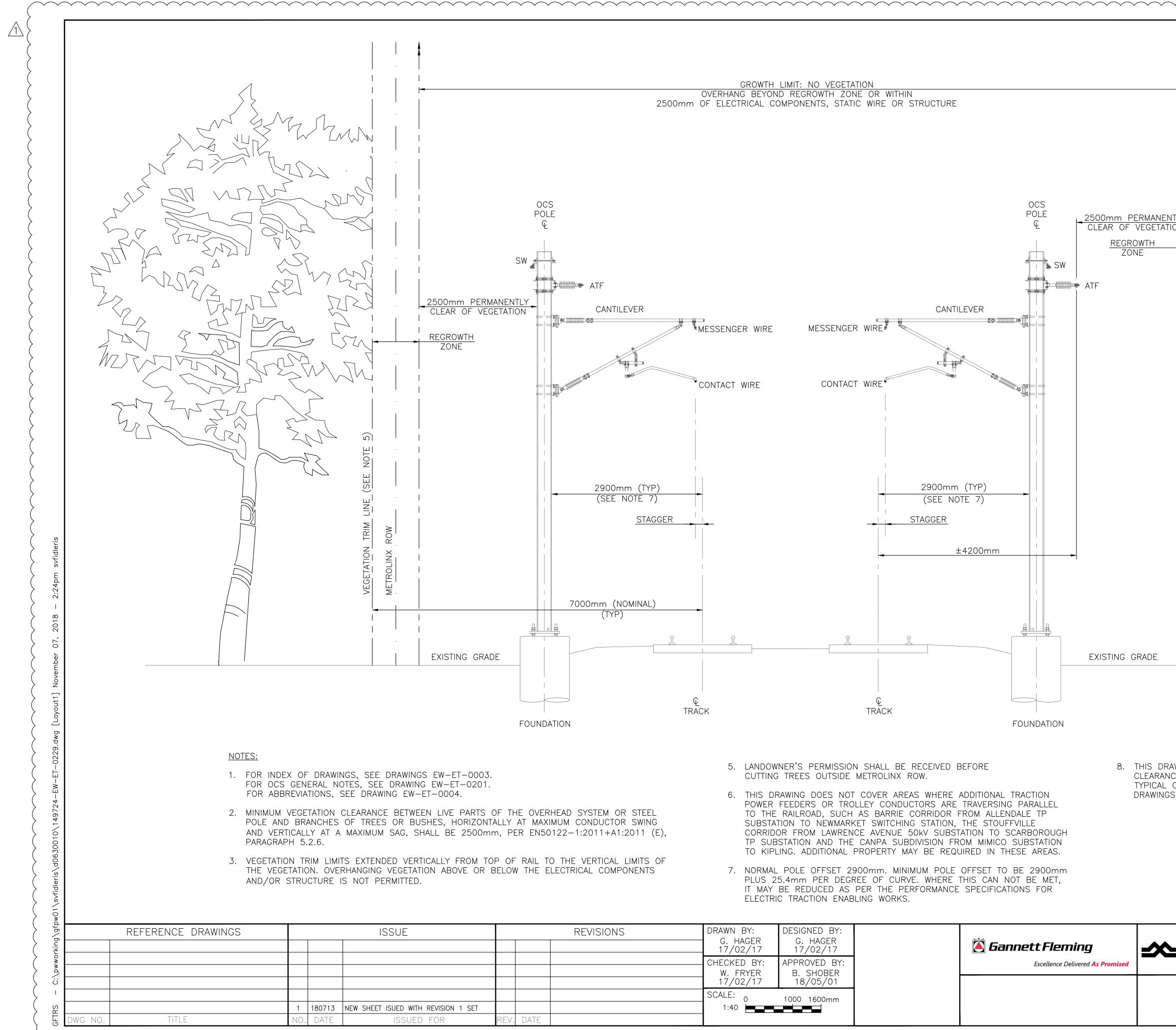

METROLINX PROJECT NO. 149724 ELECTRIFICATION IMPLEMENTATION ENABLING WORKS ET STANDARDS CLEARANCE TO STATION PLATFORM CANOPY DWG. NO. REV. SHEET CONTRACT NO. $\times \times$ QBS-2014-IEP-002 EW-ET-0227

			FEE	DER WIRE (5	56 KCMIL AC	SR 37 STRAN	ID EAGLE)				
			CONDITION 1	•		CONDITION 2					
SPAN (m)	S1 (mm) (75°C, 0 m/s)	T1 (N) (75°C, 0 m/s)	X1 (mm) (16°C, 35 m/s)	Y1 (mm) (16°C, 35 m/s)	T1'(N) (16°C, 35 m/s)	S2 (mm) (-40°C, 0 m/s)	T2 (N) (-40°C, 0 m/s)	X2 (mm) (-40°C, 25 m/s)	Y2 (mm) (-40°C, 25 m/s)	T2'(N) (-40°C, 25 m/s)	
65	1119.094	5998	482.152	586.152	20137	148.469	45209	111.622	185.193	45421	
64	1097.939	5927	468.885	570.024	20074	143.759	45264	108.097	179.346	45470	
62	1056.033	5783	442.810	538.325	19949	134.590	45373	101.233	167.958	45566	
60	1014.626	5637	417.350	507.373	19822	125.754	45479	94.614	156.976	45659	
58	973.720	5488	392.512	477.177	19695	117.247	45581	88.238	146.396	45749	
56	933.334	5338	368.303	447.746	19567	109.063	45681	82.100	136.214	45837	
54	893.443	5185	344.730	419.088	19438	101.199	45776	76.200	126.425	45921	
52	854.064	5030	321.802	391.214	19309	93.651	45870	70.534	117.025	46003	
50	815.175	4872	299.527	364.135	19180	86.418	45959	65.101	108.011	46082	
48	776.762	4712	277.916	337.863	19051	79.495	46044	59.899	99.379	46158	
46	738.868	4550	256.980	312.410	18922	72.878	46127	54.924	91.126	46231	
44	701.454	4385	236.729	287.791	18793	66.563	46206	50.176	83.248	46301	
42	664.548	4217	217.176	264.021	18665	60.551	46282	45.652	75.742	46368	
40	628.113	4047	198.335	241.116	18538	54.835	46354	41.351	68.606	46432	
38	592.159	3874	180.220	219.094	18413	49.416	46422	37.270	61.835	46493	
36	556.6953	3698	162.847	197.973	18288	44.289	46488	33.408	55.428	46551	
34	521.725	3520	146.233	177.775	18166	39.452	46550	29.764	49.382	46606	
32	487.217	3339	130.395	158.521	18046	34.903	46609	26.336	43.695	46658	
30	453.186	3155	115.352	140.233	17929	30.640	46664	23.123	38.363	46707	
28	419.654	2968	101.129	122.943	17815	26.662	46714	20.123	33.386	46753	
26	386.578	2778	87.738	106.663	17706	22.965	46763	17.335	28.761	46796	
24	353.997	2585	75.203	91.424	17601	19.550	46807	14.758	24.485	46835	
22	321.885	2389	63.553	77.261	17501	16.413	46848	12.392	20.559	46871	
20	290.250	2189	52.810	64.201	17406	13.553	46886	10.234	16.979	46904	
18	259.079	1987	42.993	52.266	17318	10.971	46918	8.284	13.744	46935	
16	228.394	1781	34.132	41.494	17236	8.662	46950	6.542	10.853	46962	
14	198.165	1571	26.242	31.902	17164	6.628	46977	5.006	8.305	46985	
12	168.439	1358	19.353	23.528	17099	4.867	47000	3.676	6.099	47006	
10	139.154	1142	13.485	16.393	17041	3.379	47019	2.552	4.234	47024	

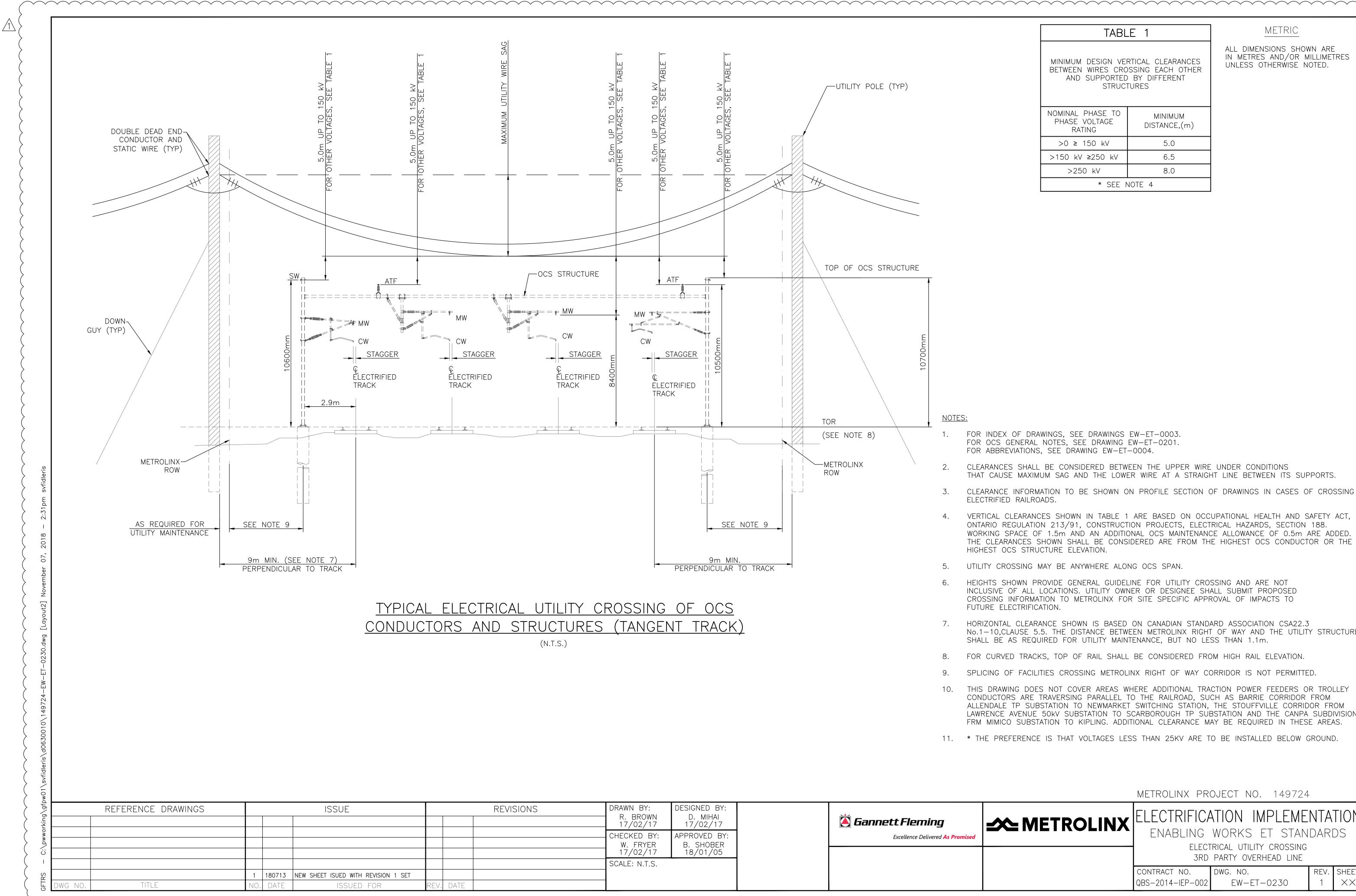
	CONDITION 1	
	TEMPERATURE °C	75
S1	WIND SPEED (m/s)	0
	TENSION (N)	T1
	TEMPERATURE °C	16
X 1	WIND SPEED (m/s)	35
	TENSION (N)	T1'
	TEMPERATURE °C	16
Y1	WIND SPEED (m/s)	35
	TENSION (N)	T1'

	CONDITION 2	
	TEMPERATURE °C	-40
S2	WIND SPEED (m/s)	0
	TENSION (N)	T2
	TEMPERATURE °C	-40
X2	WIND SPEED (m/s)	25
	TENSION (N)	T2'
	TEMPERATURE °C	-40
Y2	WIND SPEED (m/s)	25
	TENSION (N)	T2'

s/ I ∩ M							
g \grp		REFERENCE DRAWINGS			ISSUE		
king							
× d/							
:							
I			1	180713	REISSUED WITH REVISION 1 SET		
n L			0	161214	ISSUED AS FINAL EW-ET STANDARDS		
_ כ∟	DWG NO.	TITLE	NO.	DATE	ISSUED FOR	REV. DATE	


<u>NOTES</u>

REVISIONS	DRAWN BY: R. BROWN 16/05/06 CHECKED BY: W. FRYER 16/05/06	DESIGNED BY: D. MIHAI 16/05/06 APPROVED BY: B. SHOBER 16/05/06	Excellence Delivered		TION IMPLEME WORKS ET STAN – maximum and minimu		
	SCALE:			CONTRACT NO. QBS-2014-IEP-002	DWG. NO. EW-ET-0228	REV. 1	SHEET XX


METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

 FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003.
 FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201.
 FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004. 2. S1 AND S2: VERTICAL SAG AT MID-SPAN UNDER NO WIND AND NO ICE CONDITION. 3. X1 AND X2: HORIZONTAL SAG AT MID-SPAN UNDER WIND AND NO ICE CONDITION. 4. Y1 AND Y2: VERTICAL SAG AT MID-SPAN UNDER WIND AND NO ICE CONDITION. 5. REFERENCE TENSION T = 17,800(N) AT $16^{\circ}C$, NO WIND. 6. TENSION CALCULATION T1 AND T1' = TREF. -5% (ERECTION TOLERANCE) FOR MAXIMUM SAG. 7. TENSION CALCULATION T2 AND T2' = TREF. +5% (ERECTION TOLERANCE) FOR MINIMUM SAG. 8. WIND EXPOSURE CO-EFFICIENT = 1.0

↓		METRIC
		ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.
' ' 		
		MSS M
 <u> - NC</u>	FML Z	
	-	NP FILL VS
	i i i i i i i i i i i i i i i i i i i	
		L'AND STUDIE
TRIM LI	ROW	
VEGETATION	METROLINX	
	-	
	ROVIDES INFORMATION EGETATION ALONG TH	ABOUT THE MINIMUM
OCS ARR		ES AND PORTALS, SEE
		METROLINX PROJECT NO. 149724
_ R <i>A</i> E	ETROLIN	
		ENABLING WORKS ET STANDARDS
		CONTRACT NO. DWG. NO. REV. SHEET
		QBS-2014-IEP-002 EW-ET-0229 1 XX

REVISIONS	DRAWN BY: R. BROWN 17/02/17	DESIGNED BY: D. MIHAI 17/02/17	🎽 Gannett Fleming		TION IMPLEME		
	CHECKED BY: W. FRYER	APPROVED BY: B. SHOBER	Excellence Delivered As Promised	ENABLING	WORKS ET STAN RICAL UTILITY CROSSING		JS
	17/02/17 SCALE: N.T.S.	18/01/05				REV. 1	SHEET XX

TABLE ²

MINIMUM DESIGN VERTICAL CLEARANCES BETWEEN WIRES CROSSING EACH OTHER AND SUPPORTED BY DIFFERENT STRUCTURES

NOMINAL PHASE TO PHASE VOLTAGE RATING	MINIMUM DISTANCE,(m)
>0 ≥ 150 kV	5.0
>150 kV ≥250 kV	6.5
>250 kV	8.0
* SEE N	NOTE 4

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201. FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004.

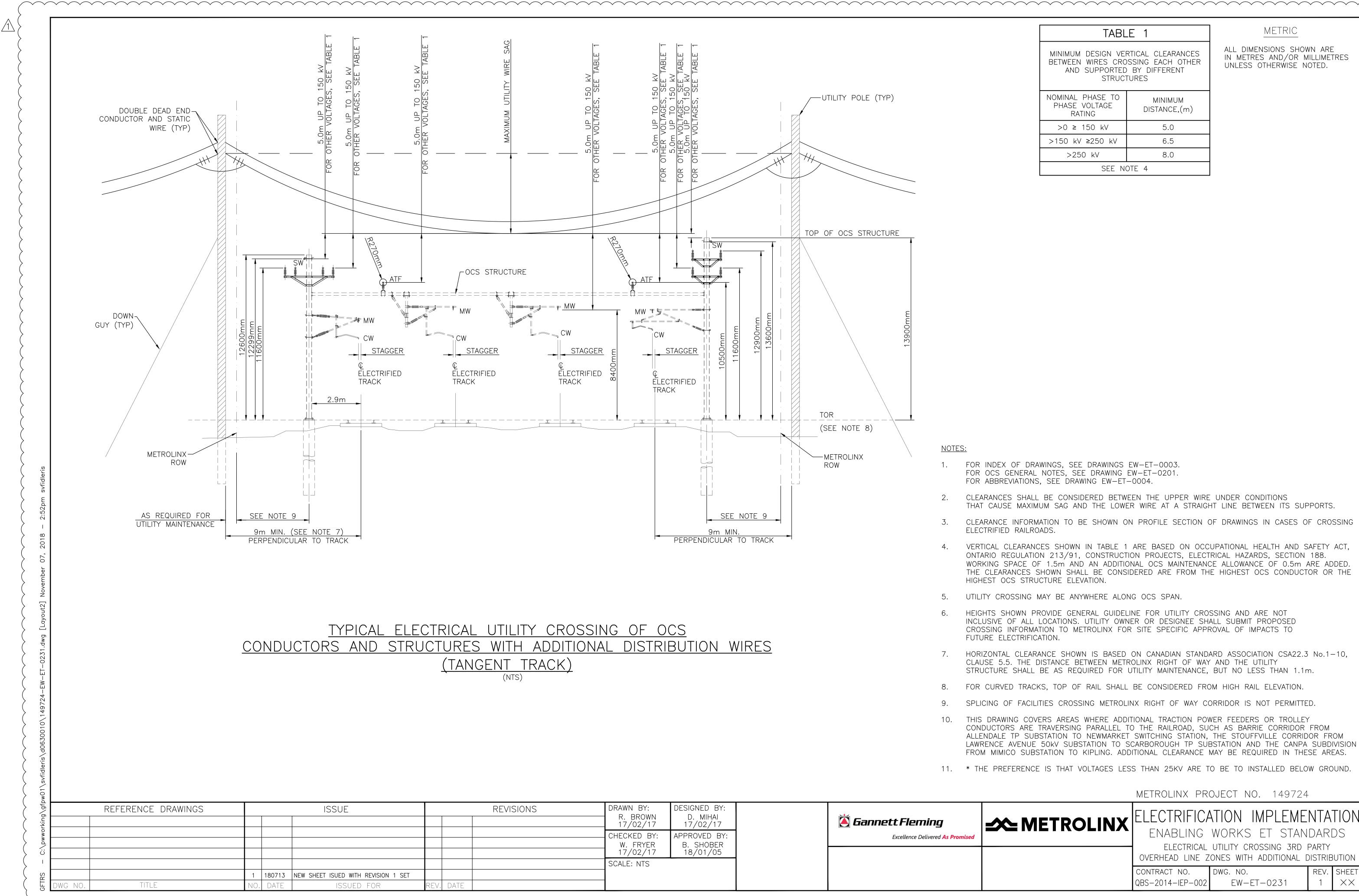
CLEARANCES SHALL BE CONSIDERED BETWEEN THE UPPER WIRE UNDER CONDITIONS THAT CAUSE MAXIMUM SAG AND THE LOWER WIRE AT A STRAIGHT LINE BETWEEN ITS SUPPORTS.

CLEARANCE INFORMATION TO BE SHOWN ON PROFILE SECTION OF DRAWINGS IN CASES OF CROSSING

4. VERTICAL CLEARANCES SHOWN IN TABLE 1 ARE BASED ON OCCUPATIONAL HEALTH AND SAFETY ACT, ONTARIO REGULATION 213/91, CONSTRUCTION PROJECTS, ELECTRICAL HAZARDS, SECTION 188. WORKING SPACE OF 1.5m AND AN ADDITIONAL OCS MAINTENANCE ALLOWANCE OF 0.5m ARE ADDED. THE CLEARANCES SHOWN SHALL BE CONSIDERED ARE FROM THE HIGHEST OCS CONDUCTOR OR THE HIGHEST OCS STRUCTURE ELEVATION.

5. UTILITY CROSSING MAY BE ANYWHERE ALONG OCS SPAN.

HEIGHTS SHOWN PROVIDE GENERAL GUIDELINE FOR UTILITY CROSSING AND ARE NOT INCLUSIVE OF ALL LOCATIONS. UTILITY OWNER OR DESIGNEE SHALL SUBMIT PROPOSED CROSSING INFORMATION TO METROLINX FOR SITE SPECIFIC APPROVAL OF IMPACTS TO


7. HORIZONTAL CLEARANCE SHOWN IS BASED ON CANADIAN STANDARD ASSOCIATION CSA22.3 No.1-10, CLAUSE 5.5. THE DISTANCE BETWEEN METROLINX RIGHT OF WAY AND THE UTILITY STRUCTURE SHALL BE AS REQUIRED FOR UTILITY MAINTENANCE, BUT NO LESS THAN 1.1m.

8. FOR CURVED TRACKS, TOP OF RAIL SHALL BE CONSIDERED FROM HIGH RAIL ELEVATION.

9. SPLICING OF FACILITIES CROSSING METROLINX RIGHT OF WAY CORRIDOR IS NOT PERMITTED.

10. THIS DRAWING DOES NOT COVER AREAS WHERE ADDITIONAL TRACTION POWER FEEDERS OR TROLLEY CONDUCTORS ARE TRAVERSING PARALLEL TO THE RAILROAD, SUCH AS BARRIE CORRIDOR FROM ALLENDALE TP SUBSTATION TO NEWMARKET SWITCHING STATION, THE STOUFFVILLE CORRIDOR FROM LAWRENCE AVENUE 50kV SUBSTATION TO SCARBOROUGH TP SUBSTATION AND THE CANPA SUBDIVISION FRM MIMICO SUBSTATION TO KIPLING. ADDITIONAL CLEARANCE MAY BE REQUIRED IN THESE AREAS.

11. * THE PREFERENCE IS THAT VOLTAGES LESS THAN 25KV ARE TO BE INSTALLED BELOW GROUND.

EVISIONS	DRAWN BY: R. BROWN 17/02/17	DESIGNED BY: D. MIHAI 17/02/17	🎽 Gannett Fleming		TION IMPLEME		
	CHECKED BY: W. FRYER 17/02/17	APPROVED BY: B. SHOBER 18/01/05	Excellence Delivered As Promised	ENABLING Electrical	WORKS ET STAN UTILITY CROSSING 3RD ONES WITH ADDITIONAL [PARTY	
	SCALE: NTS				DWG. NO.	REV. 1	

NOTES:

- ELECTRIFIED RAILROADS.

- FUTURE ELECTRIFICATION.
- 8.
- 9.

TABLE

MINIMUM DESIGN VERTICAL CLEARANCES BETWEEN WIRES CROSSING EACH OTHER AND SUPPORTED BY DIFFERENT STRUCTURES

NOMINAL PHASE TO PHASE VOLTAGE RATING	MINIMUM DISTANCE,(m)
>0 ≥ 150 kV	5.0
>150 kV ≥250 kV	6.5
>250 kV	8.0
SEE N	OTE 4

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201. FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004.

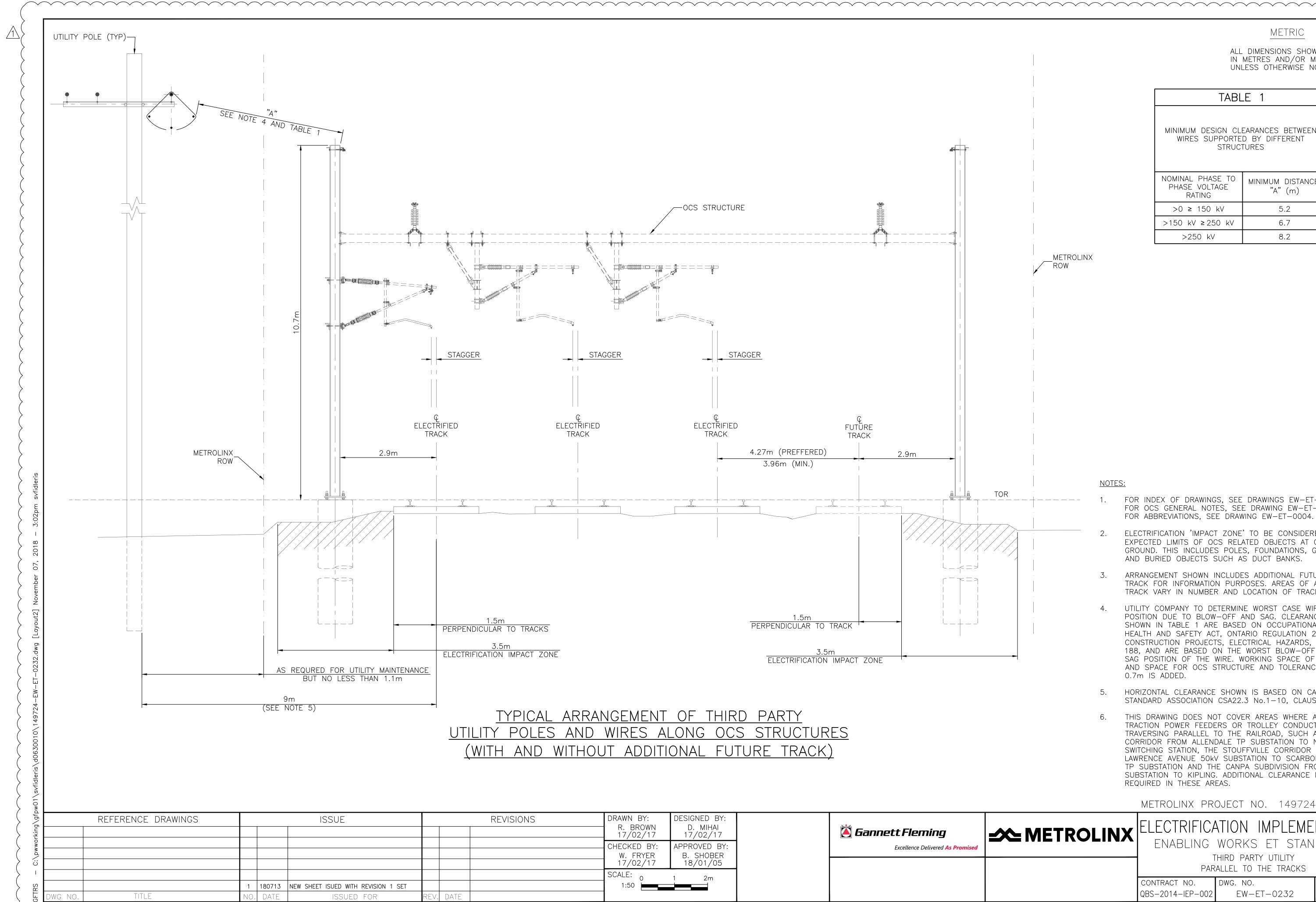
CLEARANCES SHALL BE CONSIDERED BETWEEN THE UPPER WIRE UNDER CONDITIONS THAT CAUSE MAXIMUM SAG AND THE LOWER WIRE AT A STRAIGHT LINE BETWEEN ITS SUPPORTS

3. CLEARANCE INFORMATION TO BE SHOWN ON PROFILE SECTION OF DRAWINGS IN CASES OF CROSSING

4. VERTICAL CLEARANCES SHOWN IN TABLE 1 ARE BASED ON OCCUPATIONAL HEALTH AND SAFETY ACT, ONTARIO REGULATION 213/91, CONSTRUCTION PROJECTS, ELECTRICAL HAZARDS, SECTION 188. WORKING SPACE OF 1.5m AND AN ADDITIONAL OCS MAINTENANCE ALLOWANCE OF 0.5m ARE ADDED. THE CLEARANCES SHOWN SHALL BE CONSIDERED ARE FROM THE HIGHEST OCS CONDUCTOR OR THE HIGHEST OCS STRUCTURE ELEVATION.

5. UTILITY CROSSING MAY BE ANYWHERE ALONG OCS SPAN.

HEIGHTS SHOWN PROVIDE GENERAL GUIDELINE FOR UTILITY CROSSING AND ARE NOT INCLUSIVE OF ALL LOCATIONS. UTILITY OWNER OR DESIGNEE SHALL SUBMIT PROPOSED CROSSING INFORMATION TO METROLINX FOR SITE SPECIFIC APPROVAL OF IMPACTS TO


HORIZONTAL CLEARANCE SHOWN IS BASED ON CANADIAN STANDARD ASSOCIATION CSA22.3 No.1-10, CLAUSE 5.5. THE DISTANCE BETWEEN METROLINX RIGHT OF WAY AND THE UTILITY STRUCTURE SHALL BE AS REQUIRED FOR UTILITY MAINTENANCE, BUT NO LESS THAN 1.1m.

FOR CURVED TRACKS, TOP OF RAIL SHALL BE CONSIDERED FROM HIGH RAIL ELEVATION.

SPLICING OF FACILITIES CROSSING METROLINX RIGHT OF WAY CORRIDOR IS NOT PERMITTED.

THIS DRAWING COVERS AREAS WHERE ADDITIONAL TRACTION POWER FEEDERS OR TROLLEY CONDUCTORS ARE TRAVERSING PARALLEL TO THE RAILROAD, SUCH AS BARRIE CORRIDOR FROM ALLENDALE TP SUBSTATION TO NEWMARKET SWITCHING STATION, THE STOUFFVILLE CORRIDOR FROM LAWRENCE AVENUE 50kV SUBSTATION TO SCARBOROUGH TP SUBSTATION AND THE CANPA SUBDIVISION FROM MIMICO SUBSTATION TO KIPLING. ADDITIONAL CLEARANCE MAY BE REQUIRED IN THESE AREAS.

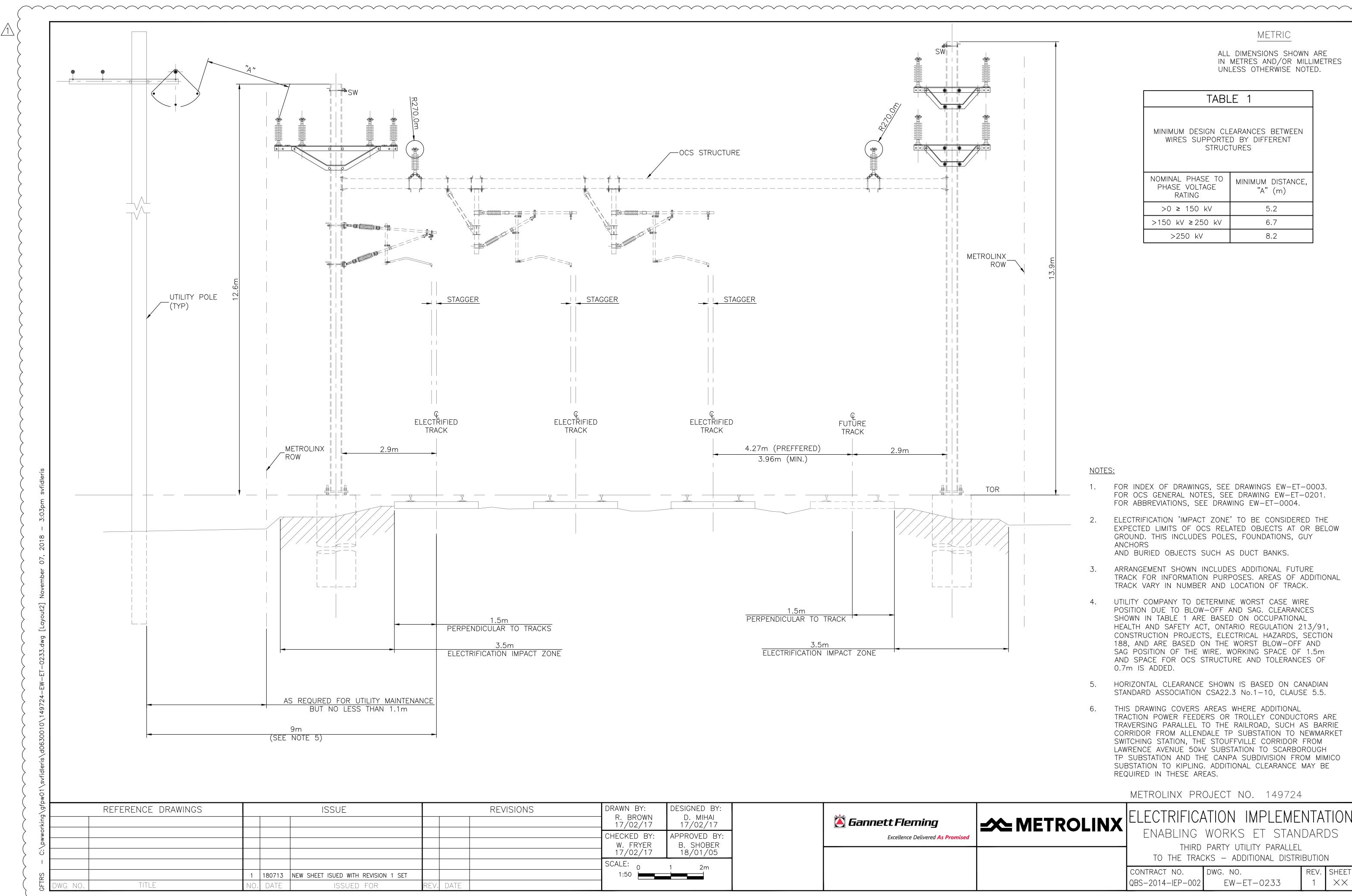
11. * THE PREFERENCE IS THAT VOLTAGES LESS THAN 25KV ARE TO BE TO INSTALLED BELOW GROUND.

			R. BROWN D. MIHAI 17/02/17 17/02/17	🎽 Gannett Fleming	ELECTRIFICATION IMPLEMENTATION
		CHE	HECKED BY: APPROVED BY: W. FRYER B. SHOBER 17/02/17 18/01/05	Excellence Delivered As Promised	ENABLING WORKS ET STANDARDS THIRD PARTY UTILITY
Image: DWG NO.TITLEImage: NO.Image: NO.Image: NO.	ISUED WITH REVISION 1 SET	SCA	CALE: 0 1 2m 1:50		PARALLEL TO THE TRACKSCONTRACT NO.DWG. NO.REV.SHEETQBS-2014-IEP-002EW-ET-02321XX

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

TABLE 1


MINIMUM DESIGN CLEARANCES BETWEEN WIRES SUPPORTED BY DIFFERENT STRUCTURES

NOMINAL PHASE TO PHASE VOLTAGE RATING	MINIMUM DISTANCE, "A" (m)
>0 ≥ 150 kV	5.2
>150 kV ≥250 kV	6.7
>250 kV	8.2

METROLINX ROW

NOTES:

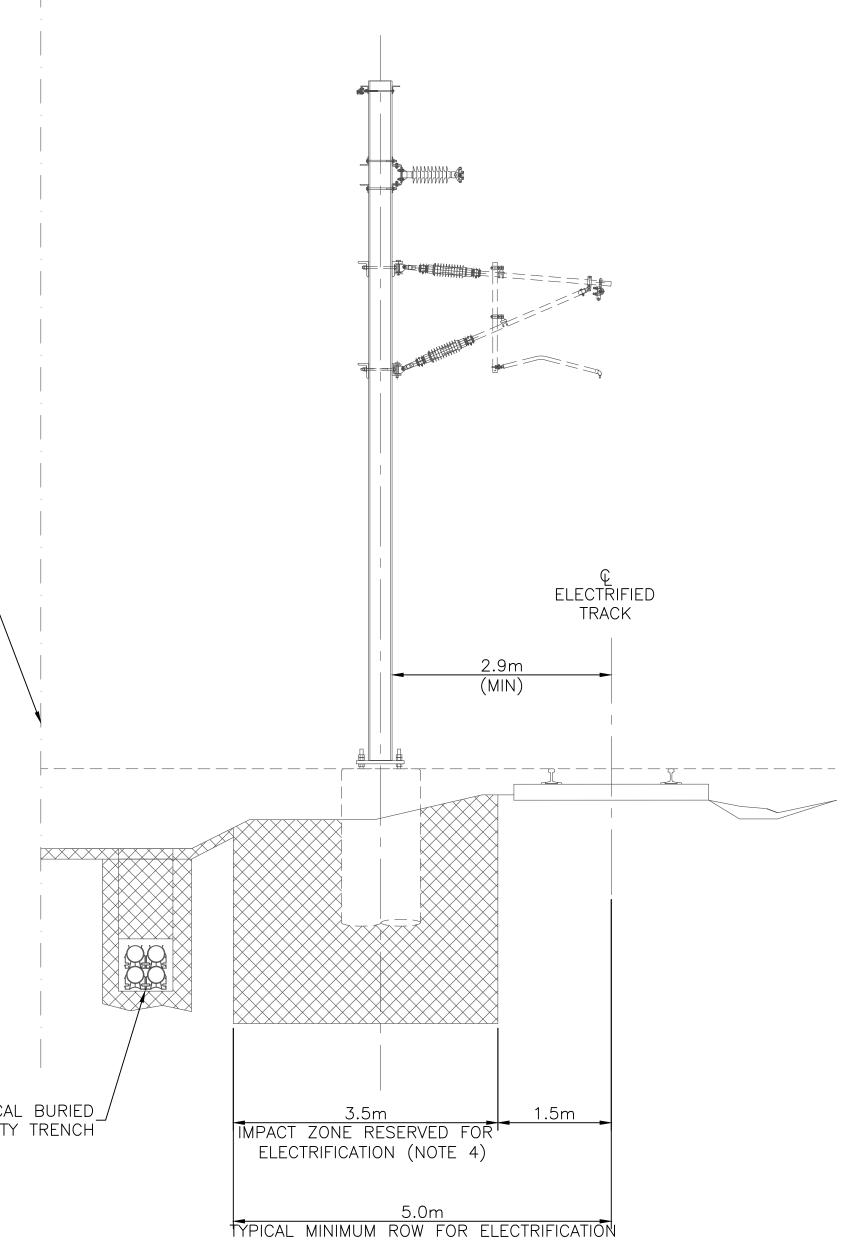
- FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201. FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004.
- ELECTRIFICATION 'IMPACT ZONE' TO BE CONSIDERED THE 2. EXPECTED LIMITS OF OCS RELATED OBJECTS AT OR BELOW GROUND. THIS INCLUDES POLES, FOUNDATIONS, GUY ANCHORS AND BURIED OBJECTS SUCH AS DUCT BANKS.
- ARRANGEMENT SHOWN INCLUDES ADDITIONAL FUTURE 3. TRACK FOR INFORMATION PURPOSES. AREAS OF ADDITIONAL TRACK VARY IN NUMBER AND LOCATION OF TRACK.
- UTILITY COMPANY TO DETERMINE WORST CASE WIRE 4. POSITION DUE TO BLOW-OFF AND SAG. CLEARANCES SHOWN IN TABLE 1 ARE BASED ON OCCUPATIONAL HEALTH AND SAFETY ACT, ONTARIO REGULATION 213/91, CONSTRUCTION PROJECTS, ELECTRICAL HAZARDS, SECTION 188, AND ARE BASED ON THE WORST BLOW-OFF AND SAG POSITION OF THE WIRE. WORKING SPACE OF 1.5m AND SPACE FOR OCS STRUCTURE AND TOLERANCES OF 0.7m IS ADDED.
- 5. HORIZONTAL CLEARANCE SHOWN IS BASED ON CANADIAN STANDARD ASSOCIATION CSA22.3 No.1-10, CLAUSE 5.5.
- THIS DRAWING DOES NOT COVER AREAS WHERE ADDITIONAL 6. TRACTION POWER FEEDERS OR TROLLEY CONDUCTORS ARE TRAVERSING PARALLEL TO THE RAILROAD, SUCH AS BARRIE CORRIDOR FROM ALLENDALE TP SUBSTATION TO NEWMARKET SWITCHING STATION, THE STOUFFVILLE CORRIDOR FROM LAWRENCE AVENUE 50kV SUBSTATION TO SCARBOROUGH TP SUBSTATION AND THE CANPA SUBDIVISION FROM MIMICO SUBSTATION TO KIPLING. ADDITIONAL CLEARANCE MAY BE REQUIRED IN THESE AREAS.

g∖gfp	REFERENCE DRAWINGS		ISSUE	REVISIONS	DRAWN BY:	DESIGNED BY:			ATION IMPLEM	
rking					R. BROWN 17/02/17	D. MIHAI 17/02/17	Gannett Fleming METROLINX			
0 M M					CHECKED BY:	APPROVED BY:	Excellence Delivered As Promised	ENABLING	WORKS ET STA	ANDARDS
C:\p					W. FRYER 17/02/17	B. SHOBER 18/01/05			PARTY UTILITY PARALL CKS – ADDITIONAL DIS	
Ι					SCALE: 0	1 2m				
RS		1 180713	NEW SHEET ISUED WITH REVISION 1 SET		1:50				DWG. NO.	REV. SHEET
GFT	DWG NO. TITLE	NO. DATE	ISSUED FOR REV. DATE					QBS-2014-IEP-002	EW-ET-0233	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	~~~~~~	~~~~~		~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~

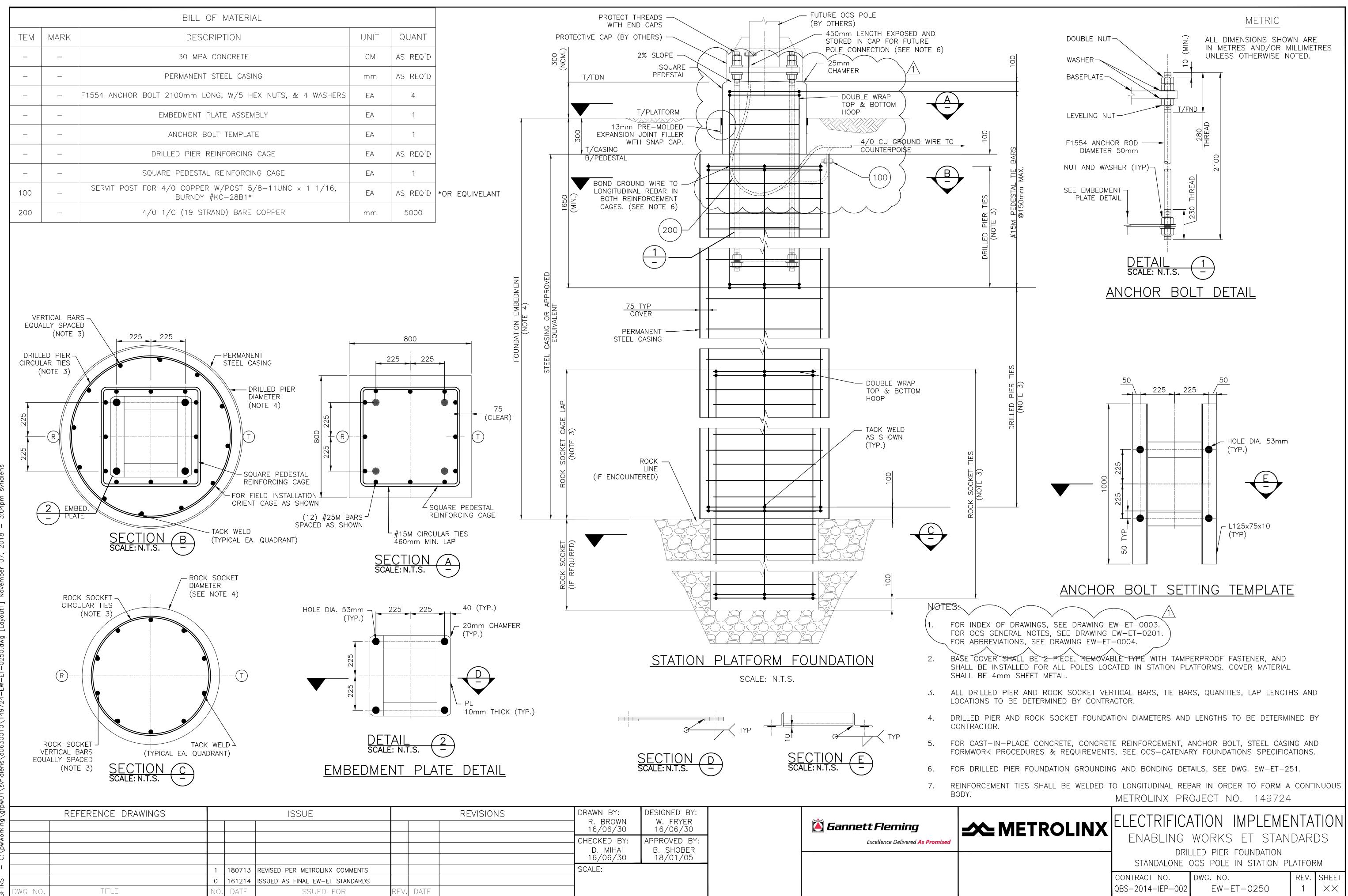
## METRIC

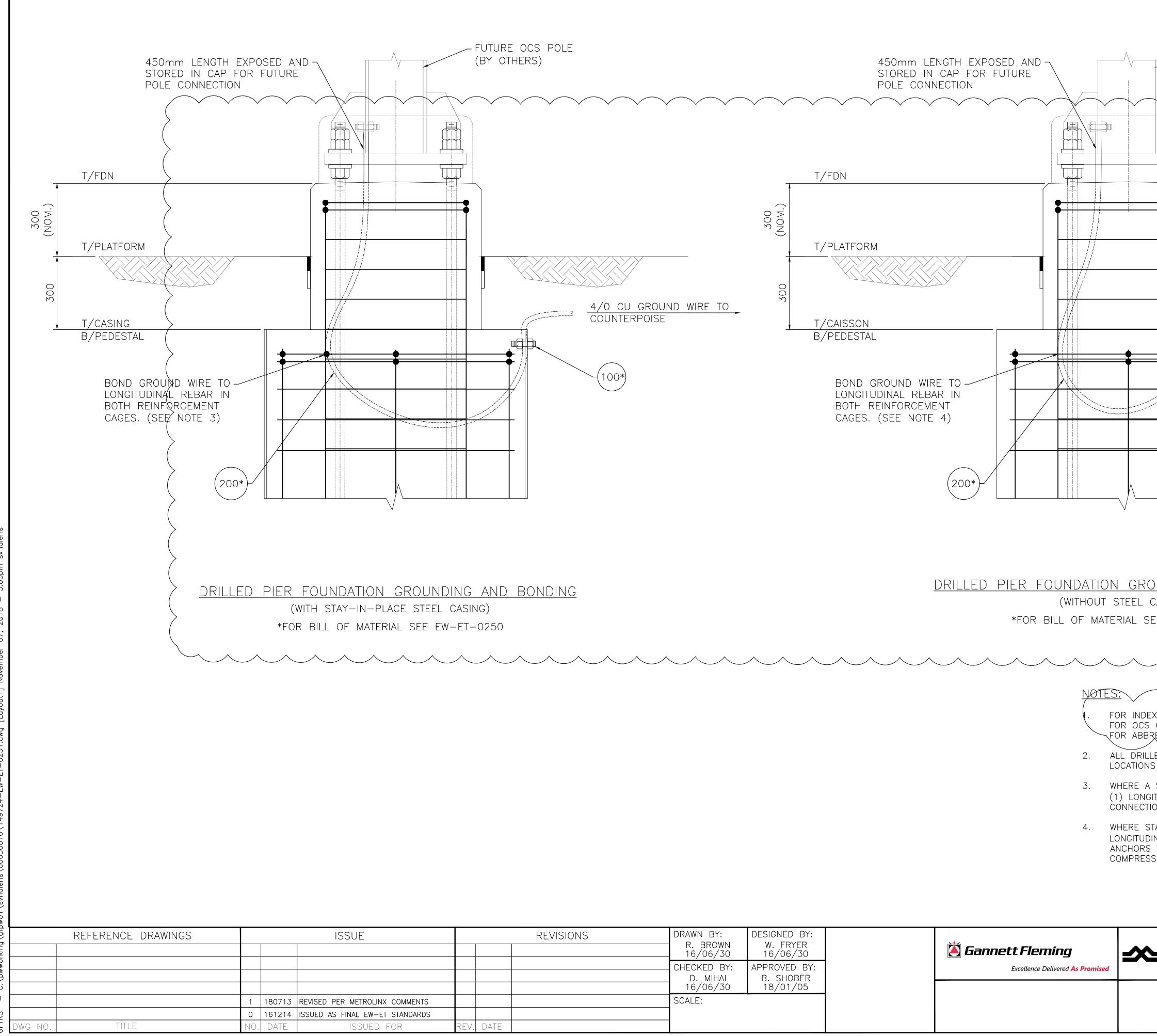
ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

## TABLE 1


### MINIMUM DESIGN CLEARANCES BETWEEN WIRES SUPPORTED BY DIFFERENT STRUCTURES

NOMINAL PHASE TO PHASE VOLTAGE RATING	MINIMUM DISTANCE, "A" (m)
>0 ≥ 150 kV	5.2
>150 kV ≥250 kV	6.7
>250 kV	8.2

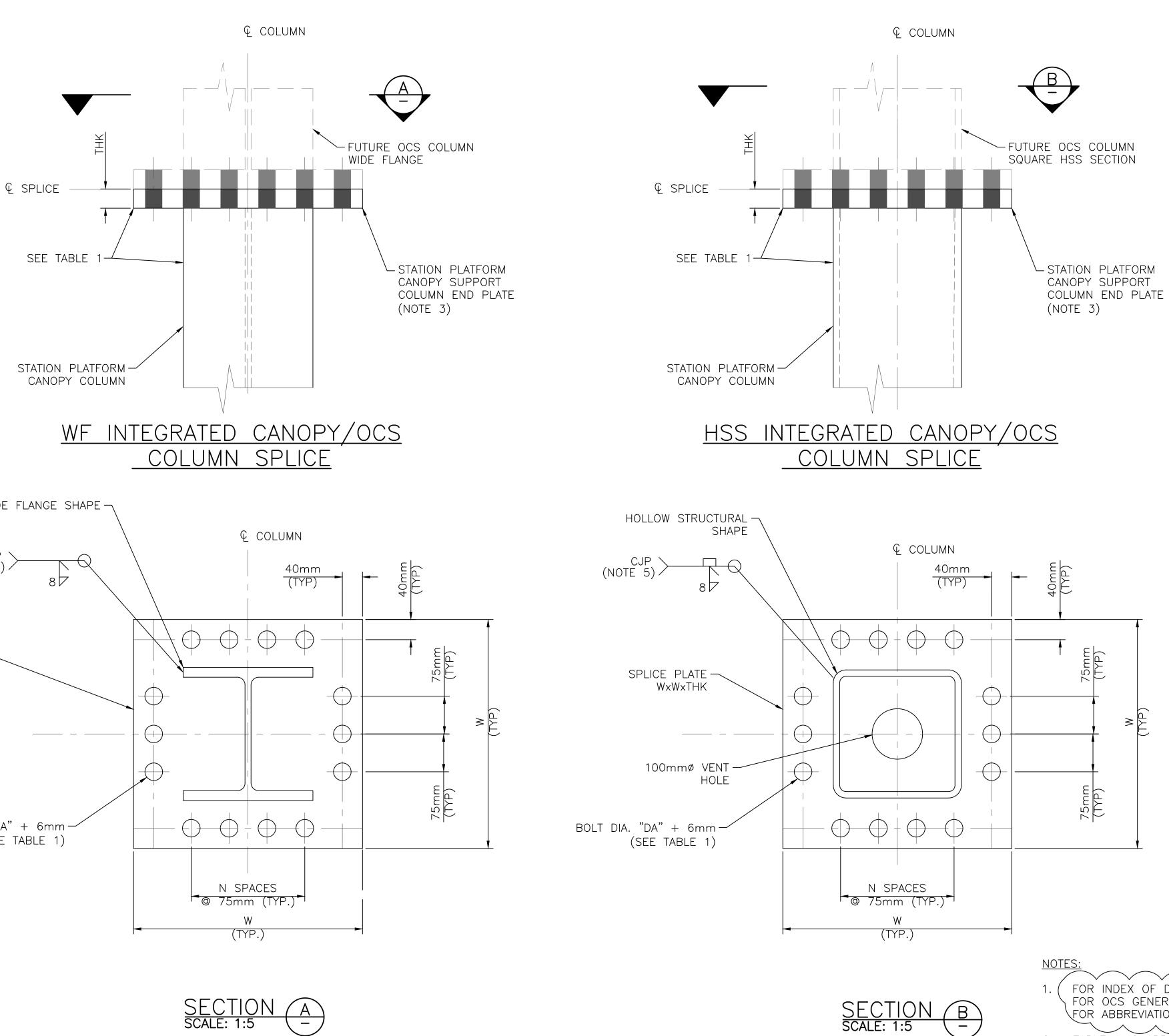

NOTES:

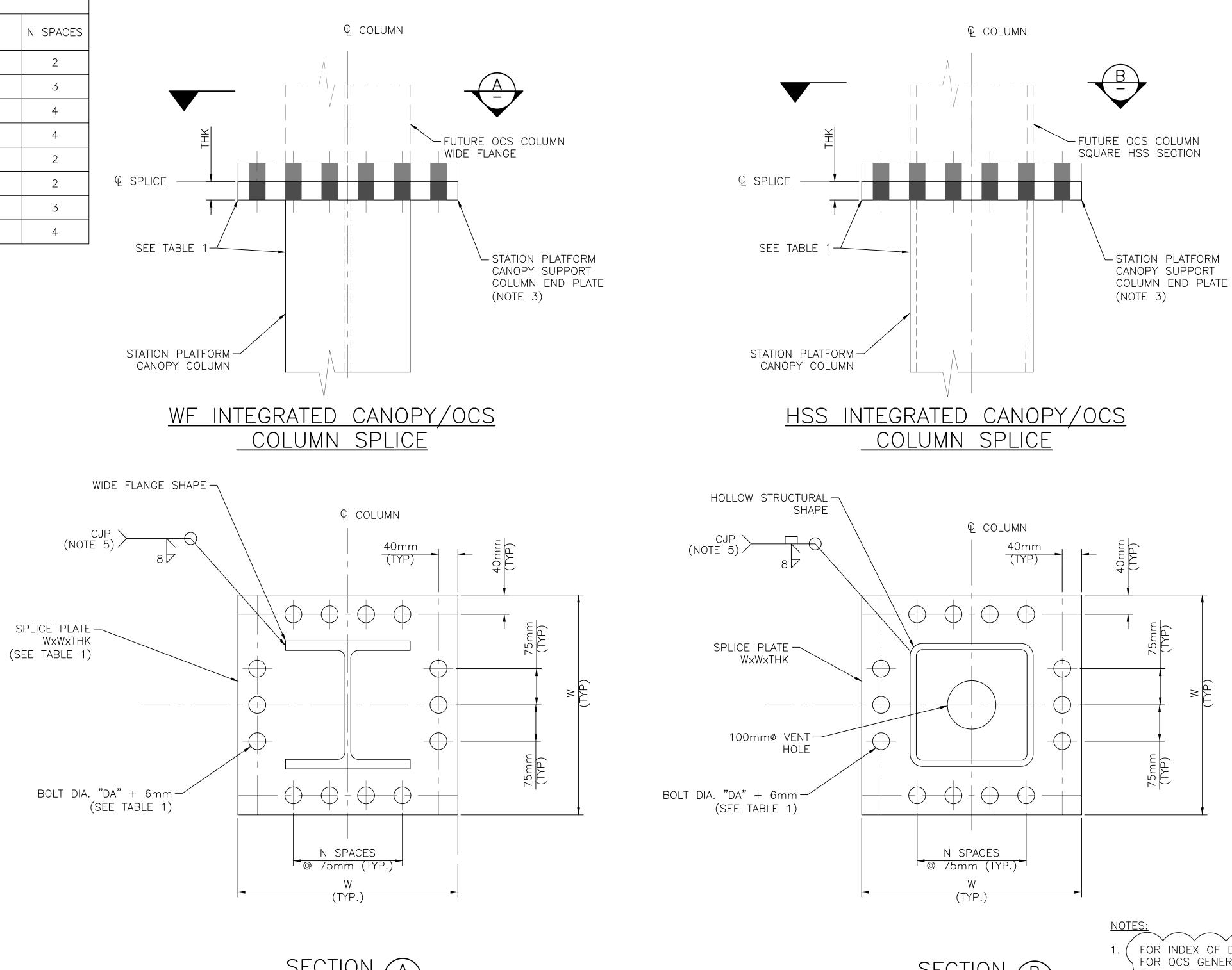

- FOR INDEX OF DRAWINGS, SEE DRAWINGS EW-ET-0003. 1. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201. FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004
- ELECTRIFICATION 'IMPACT ZONE' TO BE CONSIDERED THE 2. EXPECTED LIMITS OF OCS RELATED OBJECTS AT OR BELOW GROUND. THIS INCLUDES POLES, FOUNDATIONS, GUY ANCHORS AND BURIED OBJECTS SUCH AS DUCT BANKS.
- 3. ARRANGEMENT SHOWN INCLUDES ADDITIONAL FUTURE TRACK FOR INFORMATION PURPOSES. AREAS OF ADDITIONAL TRACK VARY IN NUMBER AND LOCATION OF TRACK.
- UTILITY COMPANY TO DETERMINE WORST CASE WIRE 4. POSITION DUE TO BLOW-OFF AND SAG. CLEARANCES SHOWN IN TABLE 1 ARE BASED ON OCCUPATIONAL HEALTH AND SAFETY ACT, ONTARIO REGULATION 213/91, CONSTRUCTION PROJECTS, ELECTRICAL HAZARDS, SECTION 188, AND ARE BASED ON THE WORST BLOW-OFF AND SAG POSITION OF THE WIRE. WORKING SPACE OF 1.5m AND SPACE FOR OCS STRUCTURE AND TOLERANCES OF 0.7m IS ADDED.
- 5. HORIZONTAL CLEARANCE SHOWN IS BASED ON CANADIAN STANDARD ASSOCIATION CSA22.3 No.1-10, CLAUSE 5.5.
- THIS DRAWING COVERS AREAS WHERE ADDITIONAL 6. TRACTION POWER FEEDERS OR TROLLEY CONDUCTORS ARE TRAVERSING PARALLEL TO THE RAILROAD, SUCH AS BARRIE CORRIDOR FROM ALLENDALE TP SUBSTATION TO NEWMARKET SWITCHING STATION, THE STOUFFVILLE CORRIDOR FROM LAWRENCE AVENUE 50kV SUBSTATION TO SCARBOROUGH TP SUBSTATION AND THE CANPA SUBDIVISION FROM MIMICO SUBSTATION TO KIPLING. ADDITIONAL CLEARANCE MAY BE REQUIRED IN THESE AREAS.

			METRIC ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.
ber 07, 2018 – 3:03pm svfidleris			
/g [Layout2] No	TYPICAL BURIED / UTILITY TRENCH IMPACT ZONE RESERVED FOR ELECTRIFICATION (NOTE 4) 5.0m TYPICAL MINIMUM ROW FOR ELECTRIFICATION		
v01\svfidleris\d0630010\149724-EW-ET-0240.dw		RELATED OBJECTS AT OR BE GUY ANCHORS AND BURIED 3. FOR SUPER ELEVATED TRACH RAIL ELEVATION. 4. BURIED UTILITIES TO BE COM	EE DRAWINGS EW-ET-0003. SEE DRAWING EW-ET-0201. AWINGS EW-ET-0004. NE' TO BE CONSIDERED THE EXPECTED LIMITS OF OCS LOW GROUND. THIS INCLUDES POLES, FOUNDATIONS, OBJECTS SUCH AS DUCT BANKS. KS, TOP OF RAIL SHALL BE CONSIDERED FROM HIGH ORDINATED WITH MX ELECTRIFICATION. METROLINX PROJECT NO. 149724
	REFERENCE DRAWINGS       ISSUE       REVISIONS       DRAWN BY: R. BROWN 17/02/17       DESIGNED BY: D.MIHAI 17/02/17       DE		ELECTRIFICATIONIMPLEMENTATIONENABLINGWORKSETSURIEDUTILITIESCONTRACTNO.QBS-2014-IEP-002DWG.DWG.NO.EW-ET-02401XX



 $\underline{/1}$ 




								METRIC	
POLE					_	FUTURE OCS PO	I F	ALL DIMENSIONS SHO IN METRES AND/OR UNLESS OTHERWISE 1	MILLIMETRES
)				NGTH EXPOSED AND -		(BY OTHERS)		UNLESS UTHERWISE I	NOTED.
	$\frown \frown \frown$		POLE CONN	IECTION					
									5
		T/	(FDN						
		300 (NOM.)						$\sum$	
			PLATFORM						
4/0 CU GROUN	ID WIRE TO	300					4/0 CU GRO	JND WIRE TO	
COUNTERPOISE			CAISSON PEDESTAL				· ·		
		,			+	<b></b>		$\langle \rangle$	
(100*)			BOND GROUND WIRE Longitudinal reba					$\langle \rangle$	
			BOTH REINFORCEME CAGES. (SEE NOTE	INT				$\leq$	
								$\langle \rangle$	
				(200*)				$\leq$	
								$\leq$	
								$\leq$	
								$\leq$	
NDING				DRILLED PIER FOUNDATIC		AND BONDI	NG	$\leq$	
				(WITHOUT *FOR BILL OF MAT	STEEL CASING) ERIAL SEE EW-ET	-0250		$\leq$	
								$\int$	
				NOTE	$\vee$ $\vee$				
					FOR INDEX OF DRAW FOR OCS GENERAL N FOR ABBREVIATIONS,	IOTES, SEE DRAWING	EW-ET-0201.)		
					ALL DRILLED PIER AN LOCATIONS TO BE DE			RS, QUANITIES, LAP LEN	GTHS AND
								GROUND WIRE TO A MIN	
					CONNECTION. BOND (	GROUND AND ALL AN	NCHORS TO STAY-IN-	PLACE STEEL CASING.	
					LONGITUDINAL REBAR ANCHORS TO LONGIT	WITH A MINIMUM O JDINAL REBAR. BONI	F TWO (2) REBAR IN	D GROUND WIRE TO EAG THE MAIN CAISSON CAG RECOGNIZED IRREVERSIBL	E. BOND ALL
					COMPRESSION CONNE	CHONS.			
REVISIONS	DRAWN BY:	DESIGNED BY:						JECT NO. 14972	
	R. BROWN 16/06/30 CHECKED BY:	W. FRYER 16/06/30 APPROVED BY:		Excellence Delivered As Promised		<b>FROLINX</b>	ENABLING	TION IMPLEME works et stad	INTATION NDARDS
	D. MIHAI 16/06/30	B. SHOBER 18/01/05					DRIL	LED PIER FOUNDATION	
	SCALE:						CONTRACT NO. QBS-2014-IEP-002	DWG. NO. EW-ET-0251	REV. SHEET

* TABLE 1						
	PLATE DIN	MENSIONS				
COLUMN TYPE	W	ТНК	DA"	N SPACES		
W200	460mm	45mm	M27	2		
W250	510mm	50mm	M27	3		
W310	560mm	45mm	M27	4		
W360	560mm	45mm	M27	4		
HSS 203x203	460mm	35mm	M24	2		
HSS 254x254	510mm	40mm	M24	2		
HSS 305x305	560mm	40mm	M24	3		
HSS 356x356	560mm	40mm	M24	4		

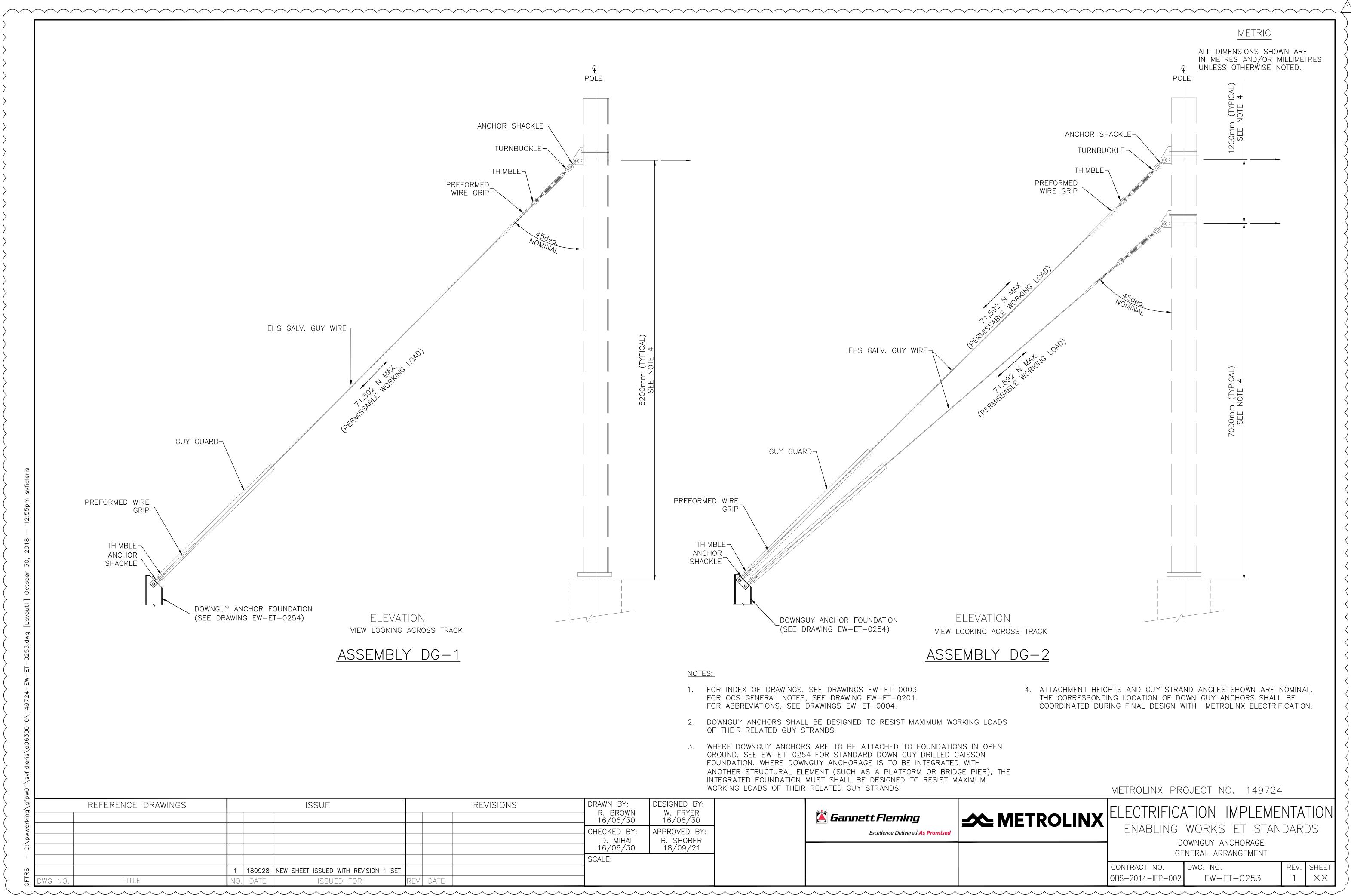
* SEE NOTE 2



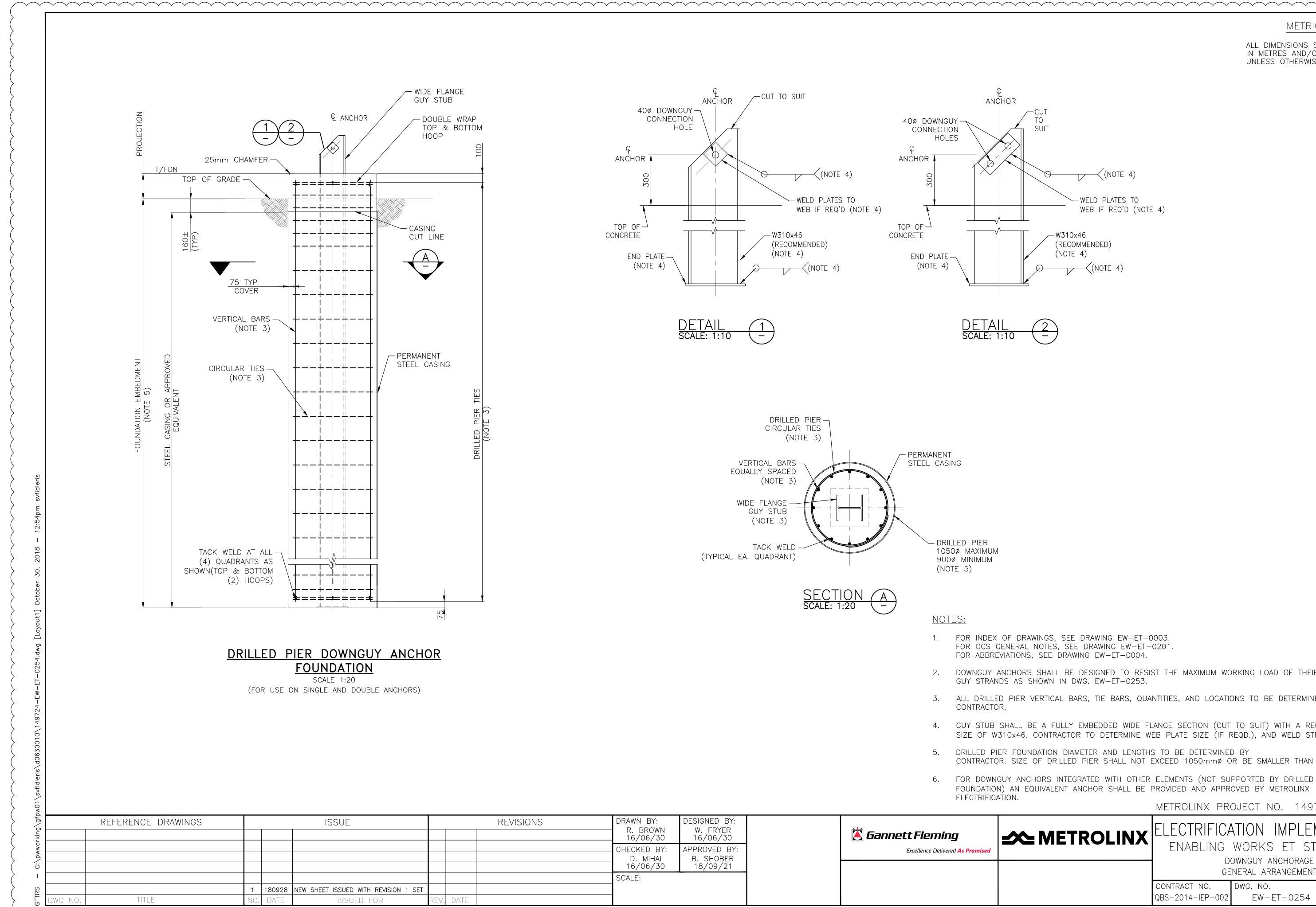


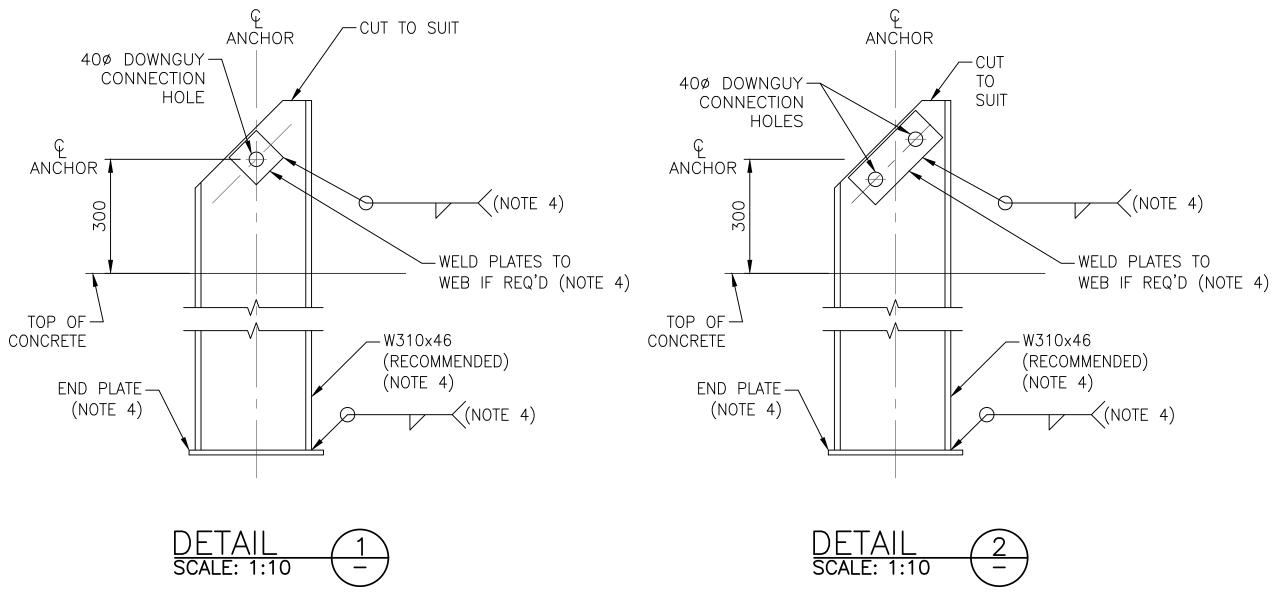
_	<u>)</u> 5C

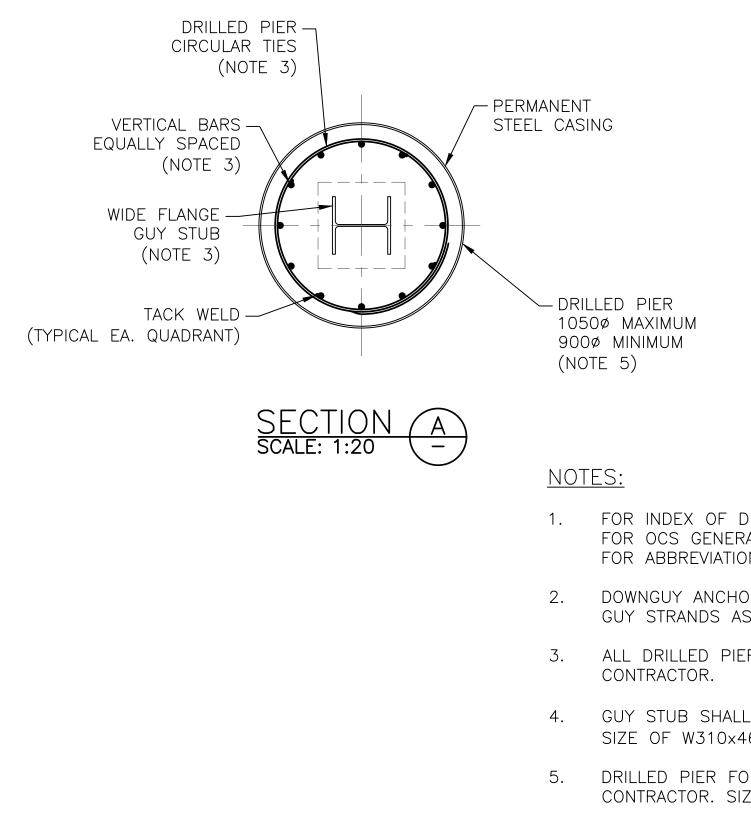
w01/									
j∖gfp	/ NEI EICENCE DIAWINGS 1330E								
rking									
owwo			_						
C:∖p			_						
I			1	180713	REISSUED WITH REVISION 1 SET	_			
RS			0	161214	ISSUED AS FINAL EW-ET STANDARDS				
GFT	DWG NO.	TITLE	NO.	DATE	ISSUED FOR	REV.	DATE		


REVISIONS DRAWN BY: DESIGNED BY: W. FRYER 16/06/30 R. BROWN 16/06/30 🎽 Gannett Fleming CHECKED BY: APPROVED BY: Excellence Delivered As Promised B. SHOBER 18/01/05 D. MIHAI 16/06/30 SCALE:

SECTION SCALE: 1:5 (A)


## METRIC


ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.


Y FOF									
	END PLATE DESIGN OF CANOPY COLUMN TO BE INTEGRATED WITH THE BOLT SIZE AND PATTERN SHOWN IN TABLE 1.								
4. BOL	T GRADE FOR SPLICES SH	HALL BE A325	M.						
5. WEI	D SHALL BE COMPLETE J	OINT PENETRA	TION.						
	METF	ROLINX PRO	DJECT NO. 149724	-					
: MET	METROLINX ELECTRIFICATION IMPLEMENTATION ENABLING WORKS ET STANDARDS STATION CANOPY INTEGRATION COLUMN SPLICE								
		RACT NO. 014-IEP-002	DWG. NO. EW-ET-0252	REV. 1	SHEET XX				



SCALE:		
		$\overline{}$







ELECTRIFICATION.

REVISIONS	DRAWN BY: R. BROWN 16/06/30	DESIGNED BY: W. FRYER 16/06/30	🎽 Gannett Fleming	ELECTRIFIC	ATION IMPLEME	NTA	TION
	CHECKED BY: D. MIHAI 16/06/30	APPROVED BY: B. SHOBER 18/09/21	Excellence Delivered As Promised	D	OWNGUY ANCHORAGE	DARI	JS
	SCALE:				ENERAL ARRANGEMENT Dwg. no. EW-ET-0254	REV. 1	SHEET XX

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

1. FOR INDEX OF DRAWINGS, SEE DRAWING EW-ET-0003. FOR OCS GENERAL NOTES, SEE DRAWING EW-ET-0201. FOR ABBREVIATIONS, SEE DRAWING EW-ET-0004.

2. DOWNGUY ANCHORS SHALL BE DESIGNED TO RESIST THE MAXIMUM WORKING LOAD OF THEIR RELATED GUY STRANDS AS SHOWN IN DWG. EW-ET-0253.

3. ALL DRILLED PIER VERTICAL BARS, TIE BARS, QUANTITIES, AND LOCATIONS TO BE DETERMINED BY

4. GUY STUB SHALL BE A FULLY EMBEDDED WIDE FLANGE SECTION (CUT TO SUIT) WITH A RECOMMENDED SIZE OF W310x46. CONTRACTOR TO DETERMINE WEB PLATE SIZE (IF REQD.), AND WELD STRENGTHS.

5. DRILLED PIER FOUNDATION DIAMETER AND LENGTHS TO BE DETERMINED BY CONTRACTOR. SIZE OF DRILLED PIER SHALL NOT EXCEED 1050mmø OR BE SMALLER THAN 900mmø.

6. FOR DOWNGUY ANCHORS INTEGRATED WITH OTHER ELEMENTS (NOT SUPPORTED BY DRILLED CAISSON FOUNDATION) AN EQUIVALENT ANCHOR SHALL BE PROVIDED AND APPROVED BY METROLINX